Loading…

Microstructures and Mechanical Properties of a Newly Developed Austenitic Heat Resistant Steel

The effect of heat treatment on the microstructures and mechanical properties of a newly developed austenitic heat resistant steel (named as T8 alloy) for ultra-supercritical applications have been studied. Results show that the main phases in the alloy after solution treatment are γ and primary MX...

Full description

Saved in:
Bibliographic Details
Published in:Acta metallurgica sinica : English letters 2019-04, Vol.32 (4), p.517-525
Main Authors: Liu, Peng, Chu, Zhao-Kuang, Yuan, Yong, Wang, Dao-Hong, Cui, Chuan-Yong, Hou, Gui-Chen, Zhou, Yi-Zhou, Sun, Xiao-Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of heat treatment on the microstructures and mechanical properties of a newly developed austenitic heat resistant steel (named as T8 alloy) for ultra-supercritical applications have been studied. Results show that the main phases in the alloy after solution treatment are γ and primary MX . Subsequent aging treatment causes the precipitation of M 23 C 6 carbides along the grain boundaries and a small number of nanoscale MX inside the grains. In addition, with increasing the aging temperature and time, the morphology of M 23 C 6 carbides changes from semi-continuous chain to continuous network. Compared with a commercial HR3C alloy, T8 alloy has comparable tensile strength, but higher stress rupture strength. The dominant cracking mechanism of the alloy during tensile test at room temperature is transgranular, while at high temperature, intergranular cracking becomes the main cracking mode, which may be caused by the precipitation of continuous M 23 C 6 carbides along the grain boundaries. Typical intergranular cracking is the dominant cracking mode of the alloy at all stress rupture tests.
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-018-0770-0