Loading…

Mesoporous carbon microspheres fabricated from KOH activation of sulfonated resorcinol–formaldehyde for “water-in-salt” electrolyte-based high-voltage (2.5 V) supercapacitors

In this work, the sulfonic acid group was introduced into the resorcinol–formaldehyde (RF) microspheres by the addition of p-phenolsulfonic acid during the polycondensation process of RF. The hydrophilicity of the sulfonated RF allowed KOH to infiltrate inside the microspheres, which enhanced the fo...

Full description

Saved in:
Bibliographic Details
Published in:Carbon Letters 2022-02, Vol.32 (1), p.285-294
Main Authors: Yu, Sangho, Sano, Hideaki, Zheng, Guobin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, the sulfonic acid group was introduced into the resorcinol–formaldehyde (RF) microspheres by the addition of p-phenolsulfonic acid during the polycondensation process of RF. The hydrophilicity of the sulfonated RF allowed KOH to infiltrate inside the microspheres, which enhanced the formation of mesopores in the carbon microspheres during the activation process by KOH. SEM and TEM observations and N2 adsorption measurements verified the formation of abundant mesopores in the porous carbon microspheres. The BET surface area of these mesoporous carbons exceeded 2000 m2/g. In 17 m NaClO4 “water-in-salt” (WIS) electrolyte-based supercapacitor, the synthesized mesoporous carbon exhibited high specific capacitance of 170 F/g at current density of 0.5 A/g, comparable to those in regular KOH electrolyte. When graphite was used as current collectors, the symmetric cell could operate at 2.5 V, and the mesoporous carbon exhibited an energy density of 43 Wh/kg at power density of 0.25 kW/kg, and 25 Wh/kg at power density of 6.25 kW/kg, respectively, which were superior to those using Pt or stainless steel as current collectors. The mesoporous carbon/graphite was an excellent electrode in new-generation “WIS” electrolyte-based high-voltage supercapacitor due to their high energy and power density.
ISSN:1976-4251
2233-4998
DOI:10.1007/s42823-021-00301-x