Loading…
A Hybrid QOGWO-GPR Algorithm for Antenna Optimization
Optimization of antenna performance is a non-linear, multi-dimensional and complex issue, which entails a significant investment of time and labor. In this paper, a hybrid algorithm of quasi-opposition grey wolf optimization (QOGWO) and Gaussian process regression (GPR) model is proposed for antenna...
Saved in:
Published in: | Applied Computational Electromagnetics Society journal 2023-09, Vol.38 (9), p.674-680 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optimization of antenna performance is a non-linear, multi-dimensional and complex issue, which entails a significant investment of time and labor. In this paper, a hybrid algorithm of quasi-opposition grey wolf optimization (QOGWO) and Gaussian process regression (GPR) model is proposed for antenna optimization. The QOGWO is prone to global optimality, high precision for complex problems, and fast convergence rate at the later stage. The GPR model can reduce time cost of antenna samples generation. After being optimized by the proposed approach, a stepped ultrawideband monopole antenna and a dual-band MIMO antenna for WLAN can achieve wider bandwidth and higher gain or isolation at low time cost, compared to other intelligent algorithms and published literatures. |
---|---|
ISSN: | 1054-4887 1943-5711 |
DOI: | 10.13052/2023.ACES.J.380906 |