Loading…
Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water
Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water. [Display omitted] •Ultrathin sulfur-doped holey carbon nitride nanosheets were...
Saved in:
Published in: | Applied catalysis. B, Environmental Environmental, 2021-05, Vol.284, p.119742, Article 119742 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3 |
container_end_page | |
container_issue | |
container_start_page | 119742 |
container_title | Applied catalysis. B, Environmental |
container_volume | 284 |
creator | Luo, Lei Gong, Zhuyu Ma, Jiani Wang, Keran Zhu, Haixing Li, Keyan Xiong, Lunqiao Guo, Xinwen Tang, Junwang |
description | Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water.
[Display omitted]
•Ultrathin sulfur-doped holey carbon nitride nanosheets were successfully prepared via self-templating approach.•Optimized S-CN(0.1) performed superior hydrogen evolution rate of 6225.4 μmol g−1 h−1 (λ> 420 nm), almost 45 times higher than the pristine bulk one.•An apparent quantum yield of 10 % at 420 nm was achieved for hydrogen production.•A reliable and universal method was developed to realize morphological evolution of graphitic carbon nitride with increasing reaction sites.
Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis. |
doi_str_mv | 10.1016/j.apcatb.2020.119742 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2934346994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320311590</els_id><sourcerecordid>2934346994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8d02atttcBBG_QPCi55AmLzZLbepLquy_N0s9yzs8eMzMmxlCLjnbcMab691GT0anblOyMp-43FblEVnxdisK0bbimKyYLJtCiK04JWcx7hhjpSjbFcH3IaFOvR9pnAc3Y2HDBJb2YYA9NRq7MNLRJ_QW6KjHEHuAFOmPT31mTIA-IJ36kEJ2oId98ob2e4vhA0Y6YbCzST5rOAyf9EcnwHNy4vQQ4eJvr8nbw_3b3VPx8vr4fHf7UhjRslTIzoqmdBXXnXNd7Wre2S13htXGNpZrU9ec21ZWpmsPIyubQ9oGamaktWJNrhbZbOJrhpjULsw45o-qlKISVSNllVHVgjIYYkRwakL_qXGvOFOHctVOLeWqQ7lqKTfTbhYa5ADfHlBF42E0YD2CScoG_7_AL02TiIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934346994</pqid></control><display><type>article</type><title>Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water</title><source>Elsevier</source><creator>Luo, Lei ; Gong, Zhuyu ; Ma, Jiani ; Wang, Keran ; Zhu, Haixing ; Li, Keyan ; Xiong, Lunqiao ; Guo, Xinwen ; Tang, Junwang</creator><creatorcontrib>Luo, Lei ; Gong, Zhuyu ; Ma, Jiani ; Wang, Keran ; Zhu, Haixing ; Li, Keyan ; Xiong, Lunqiao ; Guo, Xinwen ; Tang, Junwang</creatorcontrib><description>Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water.
[Display omitted]
•Ultrathin sulfur-doped holey carbon nitride nanosheets were successfully prepared via self-templating approach.•Optimized S-CN(0.1) performed superior hydrogen evolution rate of 6225.4 μmol g−1 h−1 (λ> 420 nm), almost 45 times higher than the pristine bulk one.•An apparent quantum yield of 10 % at 420 nm was achieved for hydrogen production.•A reliable and universal method was developed to realize morphological evolution of graphitic carbon nitride with increasing reaction sites.
Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119742</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon nitride ; Catalysts ; Conduction bands ; Doping ; Dosage ; Electronic structure ; Graphitic carbon nitride ; Hydrogen ; Hydrogen evolution ; Hydrogen production ; Nanosheets ; Nanostructure ; Photoabsorption ; Photocatalysis ; Polymers ; Precursors ; Sulfur ; Sulfur-doping ; Surface modification ; Topology ; Two-dimensional materials ; Visible water splitting</subject><ispartof>Applied catalysis. B, Environmental, 2021-05, Vol.284, p.119742, Article 119742</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3</citedby><cites>FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Gong, Zhuyu</creatorcontrib><creatorcontrib>Ma, Jiani</creatorcontrib><creatorcontrib>Wang, Keran</creatorcontrib><creatorcontrib>Zhu, Haixing</creatorcontrib><creatorcontrib>Li, Keyan</creatorcontrib><creatorcontrib>Xiong, Lunqiao</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><creatorcontrib>Tang, Junwang</creatorcontrib><title>Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water</title><title>Applied catalysis. B, Environmental</title><description>Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water.
[Display omitted]
•Ultrathin sulfur-doped holey carbon nitride nanosheets were successfully prepared via self-templating approach.•Optimized S-CN(0.1) performed superior hydrogen evolution rate of 6225.4 μmol g−1 h−1 (λ> 420 nm), almost 45 times higher than the pristine bulk one.•An apparent quantum yield of 10 % at 420 nm was achieved for hydrogen production.•A reliable and universal method was developed to realize morphological evolution of graphitic carbon nitride with increasing reaction sites.
Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis.</description><subject>Carbon nitride</subject><subject>Catalysts</subject><subject>Conduction bands</subject><subject>Doping</subject><subject>Dosage</subject><subject>Electronic structure</subject><subject>Graphitic carbon nitride</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Nanosheets</subject><subject>Nanostructure</subject><subject>Photoabsorption</subject><subject>Photocatalysis</subject><subject>Polymers</subject><subject>Precursors</subject><subject>Sulfur</subject><subject>Sulfur-doping</subject><subject>Surface modification</subject><subject>Topology</subject><subject>Two-dimensional materials</subject><subject>Visible water splitting</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8d02atttcBBG_QPCi55AmLzZLbepLquy_N0s9yzs8eMzMmxlCLjnbcMab691GT0anblOyMp-43FblEVnxdisK0bbimKyYLJtCiK04JWcx7hhjpSjbFcH3IaFOvR9pnAc3Y2HDBJb2YYA9NRq7MNLRJ_QW6KjHEHuAFOmPT31mTIA-IJ36kEJ2oId98ob2e4vhA0Y6YbCzST5rOAyf9EcnwHNy4vQQ4eJvr8nbw_3b3VPx8vr4fHf7UhjRslTIzoqmdBXXnXNd7Wre2S13htXGNpZrU9ec21ZWpmsPIyubQ9oGamaktWJNrhbZbOJrhpjULsw45o-qlKISVSNllVHVgjIYYkRwakL_qXGvOFOHctVOLeWqQ7lqKTfTbhYa5ADfHlBF42E0YD2CScoG_7_AL02TiIc</recordid><startdate>20210505</startdate><enddate>20210505</enddate><creator>Luo, Lei</creator><creator>Gong, Zhuyu</creator><creator>Ma, Jiani</creator><creator>Wang, Keran</creator><creator>Zhu, Haixing</creator><creator>Li, Keyan</creator><creator>Xiong, Lunqiao</creator><creator>Guo, Xinwen</creator><creator>Tang, Junwang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210505</creationdate><title>Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water</title><author>Luo, Lei ; Gong, Zhuyu ; Ma, Jiani ; Wang, Keran ; Zhu, Haixing ; Li, Keyan ; Xiong, Lunqiao ; Guo, Xinwen ; Tang, Junwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon nitride</topic><topic>Catalysts</topic><topic>Conduction bands</topic><topic>Doping</topic><topic>Dosage</topic><topic>Electronic structure</topic><topic>Graphitic carbon nitride</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Nanosheets</topic><topic>Nanostructure</topic><topic>Photoabsorption</topic><topic>Photocatalysis</topic><topic>Polymers</topic><topic>Precursors</topic><topic>Sulfur</topic><topic>Sulfur-doping</topic><topic>Surface modification</topic><topic>Topology</topic><topic>Two-dimensional materials</topic><topic>Visible water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Gong, Zhuyu</creatorcontrib><creatorcontrib>Ma, Jiani</creatorcontrib><creatorcontrib>Wang, Keran</creatorcontrib><creatorcontrib>Zhu, Haixing</creatorcontrib><creatorcontrib>Li, Keyan</creatorcontrib><creatorcontrib>Xiong, Lunqiao</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><creatorcontrib>Tang, Junwang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Lei</au><au>Gong, Zhuyu</au><au>Ma, Jiani</au><au>Wang, Keran</au><au>Zhu, Haixing</au><au>Li, Keyan</au><au>Xiong, Lunqiao</au><au>Guo, Xinwen</au><au>Tang, Junwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2021-05-05</date><risdate>2021</risdate><volume>284</volume><spage>119742</spage><pages>119742-</pages><artnum>119742</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water.
[Display omitted]
•Ultrathin sulfur-doped holey carbon nitride nanosheets were successfully prepared via self-templating approach.•Optimized S-CN(0.1) performed superior hydrogen evolution rate of 6225.4 μmol g−1 h−1 (λ> 420 nm), almost 45 times higher than the pristine bulk one.•An apparent quantum yield of 10 % at 420 nm was achieved for hydrogen production.•A reliable and universal method was developed to realize morphological evolution of graphitic carbon nitride with increasing reaction sites.
Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119742</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2021-05, Vol.284, p.119742, Article 119742 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2934346994 |
source | Elsevier |
subjects | Carbon nitride Catalysts Conduction bands Doping Dosage Electronic structure Graphitic carbon nitride Hydrogen Hydrogen evolution Hydrogen production Nanosheets Nanostructure Photoabsorption Photocatalysis Polymers Precursors Sulfur Sulfur-doping Surface modification Topology Two-dimensional materials Visible water splitting |
title | Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20sulfur-doped%20holey%20carbon%20nitride%20nanosheets%20with%20superior%20photocatalytic%20hydrogen%20production%20from%20water&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Luo,%20Lei&rft.date=2021-05-05&rft.volume=284&rft.spage=119742&rft.pages=119742-&rft.artnum=119742&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119742&rft_dat=%3Cproquest_cross%3E2934346994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2934346994&rft_id=info:pmid/&rfr_iscdi=true |