Loading…

Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water

Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water. [Display omitted] •Ultrathin sulfur-doped holey carbon nitride nanosheets were...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2021-05, Vol.284, p.119742, Article 119742
Main Authors: Luo, Lei, Gong, Zhuyu, Ma, Jiani, Wang, Keran, Zhu, Haixing, Li, Keyan, Xiong, Lunqiao, Guo, Xinwen, Tang, Junwang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3
cites cdi_FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3
container_end_page
container_issue
container_start_page 119742
container_title Applied catalysis. B, Environmental
container_volume 284
creator Luo, Lei
Gong, Zhuyu
Ma, Jiani
Wang, Keran
Zhu, Haixing
Li, Keyan
Xiong, Lunqiao
Guo, Xinwen
Tang, Junwang
description Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water. [Display omitted] •Ultrathin sulfur-doped holey carbon nitride nanosheets were successfully prepared via self-templating approach.•Optimized S-CN(0.1) performed superior hydrogen evolution rate of 6225.4 μmol g−1 h−1 (λ> 420 nm), almost 45 times higher than the pristine bulk one.•An apparent quantum yield of 10 % at 420 nm was achieved for hydrogen production.•A reliable and universal method was developed to realize morphological evolution of graphitic carbon nitride with increasing reaction sites. Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis.
doi_str_mv 10.1016/j.apcatb.2020.119742
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2934346994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320311590</els_id><sourcerecordid>2934346994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoPPAQ8d02atttcBBG_QPCi55AmLzZLbepLquy_N0s9yzs8eMzMmxlCLjnbcMab691GT0anblOyMp-43FblEVnxdisK0bbimKyYLJtCiK04JWcx7hhjpSjbFcH3IaFOvR9pnAc3Y2HDBJb2YYA9NRq7MNLRJ_QW6KjHEHuAFOmPT31mTIA-IJ36kEJ2oId98ob2e4vhA0Y6YbCzST5rOAyf9EcnwHNy4vQQ4eJvr8nbw_3b3VPx8vr4fHf7UhjRslTIzoqmdBXXnXNd7Wre2S13htXGNpZrU9ec21ZWpmsPIyubQ9oGamaktWJNrhbZbOJrhpjULsw45o-qlKISVSNllVHVgjIYYkRwakL_qXGvOFOHctVOLeWqQ7lqKTfTbhYa5ADfHlBF42E0YD2CScoG_7_AL02TiIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2934346994</pqid></control><display><type>article</type><title>Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water</title><source>Elsevier</source><creator>Luo, Lei ; Gong, Zhuyu ; Ma, Jiani ; Wang, Keran ; Zhu, Haixing ; Li, Keyan ; Xiong, Lunqiao ; Guo, Xinwen ; Tang, Junwang</creator><creatorcontrib>Luo, Lei ; Gong, Zhuyu ; Ma, Jiani ; Wang, Keran ; Zhu, Haixing ; Li, Keyan ; Xiong, Lunqiao ; Guo, Xinwen ; Tang, Junwang</creatorcontrib><description>Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water. [Display omitted] •Ultrathin sulfur-doped holey carbon nitride nanosheets were successfully prepared via self-templating approach.•Optimized S-CN(0.1) performed superior hydrogen evolution rate of 6225.4 μmol g−1 h−1 (λ&gt; 420 nm), almost 45 times higher than the pristine bulk one.•An apparent quantum yield of 10 % at 420 nm was achieved for hydrogen production.•A reliable and universal method was developed to realize morphological evolution of graphitic carbon nitride with increasing reaction sites. Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119742</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon nitride ; Catalysts ; Conduction bands ; Doping ; Dosage ; Electronic structure ; Graphitic carbon nitride ; Hydrogen ; Hydrogen evolution ; Hydrogen production ; Nanosheets ; Nanostructure ; Photoabsorption ; Photocatalysis ; Polymers ; Precursors ; Sulfur ; Sulfur-doping ; Surface modification ; Topology ; Two-dimensional materials ; Visible water splitting</subject><ispartof>Applied catalysis. B, Environmental, 2021-05, Vol.284, p.119742, Article 119742</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 5, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3</citedby><cites>FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Gong, Zhuyu</creatorcontrib><creatorcontrib>Ma, Jiani</creatorcontrib><creatorcontrib>Wang, Keran</creatorcontrib><creatorcontrib>Zhu, Haixing</creatorcontrib><creatorcontrib>Li, Keyan</creatorcontrib><creatorcontrib>Xiong, Lunqiao</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><creatorcontrib>Tang, Junwang</creatorcontrib><title>Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water</title><title>Applied catalysis. B, Environmental</title><description>Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water. [Display omitted] •Ultrathin sulfur-doped holey carbon nitride nanosheets were successfully prepared via self-templating approach.•Optimized S-CN(0.1) performed superior hydrogen evolution rate of 6225.4 μmol g−1 h−1 (λ&gt; 420 nm), almost 45 times higher than the pristine bulk one.•An apparent quantum yield of 10 % at 420 nm was achieved for hydrogen production.•A reliable and universal method was developed to realize morphological evolution of graphitic carbon nitride with increasing reaction sites. Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis.</description><subject>Carbon nitride</subject><subject>Catalysts</subject><subject>Conduction bands</subject><subject>Doping</subject><subject>Dosage</subject><subject>Electronic structure</subject><subject>Graphitic carbon nitride</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>Nanosheets</subject><subject>Nanostructure</subject><subject>Photoabsorption</subject><subject>Photocatalysis</subject><subject>Polymers</subject><subject>Precursors</subject><subject>Sulfur</subject><subject>Sulfur-doping</subject><subject>Surface modification</subject><subject>Topology</subject><subject>Two-dimensional materials</subject><subject>Visible water splitting</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoPPAQ8d02atttcBBG_QPCi55AmLzZLbepLquy_N0s9yzs8eMzMmxlCLjnbcMab691GT0anblOyMp-43FblEVnxdisK0bbimKyYLJtCiK04JWcx7hhjpSjbFcH3IaFOvR9pnAc3Y2HDBJb2YYA9NRq7MNLRJ_QW6KjHEHuAFOmPT31mTIA-IJ36kEJ2oId98ob2e4vhA0Y6YbCzST5rOAyf9EcnwHNy4vQQ4eJvr8nbw_3b3VPx8vr4fHf7UhjRslTIzoqmdBXXnXNd7Wre2S13htXGNpZrU9ec21ZWpmsPIyubQ9oGamaktWJNrhbZbOJrhpjULsw45o-qlKISVSNllVHVgjIYYkRwakL_qXGvOFOHctVOLeWqQ7lqKTfTbhYa5ADfHlBF42E0YD2CScoG_7_AL02TiIc</recordid><startdate>20210505</startdate><enddate>20210505</enddate><creator>Luo, Lei</creator><creator>Gong, Zhuyu</creator><creator>Ma, Jiani</creator><creator>Wang, Keran</creator><creator>Zhu, Haixing</creator><creator>Li, Keyan</creator><creator>Xiong, Lunqiao</creator><creator>Guo, Xinwen</creator><creator>Tang, Junwang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210505</creationdate><title>Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water</title><author>Luo, Lei ; Gong, Zhuyu ; Ma, Jiani ; Wang, Keran ; Zhu, Haixing ; Li, Keyan ; Xiong, Lunqiao ; Guo, Xinwen ; Tang, Junwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon nitride</topic><topic>Catalysts</topic><topic>Conduction bands</topic><topic>Doping</topic><topic>Dosage</topic><topic>Electronic structure</topic><topic>Graphitic carbon nitride</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>Nanosheets</topic><topic>Nanostructure</topic><topic>Photoabsorption</topic><topic>Photocatalysis</topic><topic>Polymers</topic><topic>Precursors</topic><topic>Sulfur</topic><topic>Sulfur-doping</topic><topic>Surface modification</topic><topic>Topology</topic><topic>Two-dimensional materials</topic><topic>Visible water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Lei</creatorcontrib><creatorcontrib>Gong, Zhuyu</creatorcontrib><creatorcontrib>Ma, Jiani</creatorcontrib><creatorcontrib>Wang, Keran</creatorcontrib><creatorcontrib>Zhu, Haixing</creatorcontrib><creatorcontrib>Li, Keyan</creatorcontrib><creatorcontrib>Xiong, Lunqiao</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><creatorcontrib>Tang, Junwang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Lei</au><au>Gong, Zhuyu</au><au>Ma, Jiani</au><au>Wang, Keran</au><au>Zhu, Haixing</au><au>Li, Keyan</au><au>Xiong, Lunqiao</au><au>Guo, Xinwen</au><au>Tang, Junwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2021-05-05</date><risdate>2021</risdate><volume>284</volume><spage>119742</spage><pages>119742-</pages><artnum>119742</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Sulfur-doped holey carbon nitride nanosheets were facilely prepared through subtly controlling of thiocyanuric acid precursor, resulting into an apparent quantum yield of 10 % at 420 nm for hydrogen production from water. [Display omitted] •Ultrathin sulfur-doped holey carbon nitride nanosheets were successfully prepared via self-templating approach.•Optimized S-CN(0.1) performed superior hydrogen evolution rate of 6225.4 μmol g−1 h−1 (λ&gt; 420 nm), almost 45 times higher than the pristine bulk one.•An apparent quantum yield of 10 % at 420 nm was achieved for hydrogen production.•A reliable and universal method was developed to realize morphological evolution of graphitic carbon nitride with increasing reaction sites. Surface engineering is an efficient way to enhance photoabsorption, promote charge separation and boost photocatalysis. Herein, sulfur-doped holey g-C3N4 nanosheets have been prepared through a universal self-templating approach with thiocyanuric acid as the single-precursor. By subtly controlling the feeding amount of precursor, the synthesized sulfur-doped holey g-C3N4 nanosheets exhibit excellent visible-light driven photocatalytic hydrogen production activity. The optimized catalyst presents a hydrogen evolution rate of 6225.4 μmol g−1h−1, with an apparent quantum yield of 10 % at 420 nm. Comprehensive characterizations and theoretical calculations suggest that the enhanced photocatalysis is attributed to the synergy of the enlarged surface area, the negatively-shifted conduction band, and the narrowed bandgap due to sulfur-doping and ultra-thin two-dimensional topology. This work highlights the importance of controlling the precursor dosage and inducing sulfur doping into the polymer, providing a promising and reliable strategy to simultaneously regulate the nanostructural and electronic structure of g-C3N4 for highly efficient photocatalysis.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119742</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2021-05, Vol.284, p.119742, Article 119742
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2934346994
source Elsevier
subjects Carbon nitride
Catalysts
Conduction bands
Doping
Dosage
Electronic structure
Graphitic carbon nitride
Hydrogen
Hydrogen evolution
Hydrogen production
Nanosheets
Nanostructure
Photoabsorption
Photocatalysis
Polymers
Precursors
Sulfur
Sulfur-doping
Surface modification
Topology
Two-dimensional materials
Visible water splitting
title Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20sulfur-doped%20holey%20carbon%20nitride%20nanosheets%20with%20superior%20photocatalytic%20hydrogen%20production%20from%20water&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Luo,%20Lei&rft.date=2021-05-05&rft.volume=284&rft.spage=119742&rft.pages=119742-&rft.artnum=119742&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119742&rft_dat=%3Cproquest_cross%3E2934346994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-9bd362f41abffb5f51bd71fc05cd6d1ac5511d894cb8b8b894d092d6e50c9dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2934346994&rft_id=info:pmid/&rfr_iscdi=true