Loading…

Regulating the bipolar response of InAs nanowire photodetector and waveguide integration

III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circ...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2024-03, Vol.124 (10)
Main Authors: Wang, Zhiqiang, Liu, Liwei, Zhong, Zhipeng, Li, Xiang, Chen, Yan, Zhang, Junju, Shi, Wu, Zhang, Xutao, Wang, Jianlu, Chu, Junhao, Huang, Hai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33
container_end_page
container_issue 10
container_start_page
container_title Applied physics letters
container_volume 124
creator Wang, Zhiqiang
Liu, Liwei
Zhong, Zhipeng
Li, Xiang
Chen, Yan
Zhang, Junju
Shi, Wu
Zhang, Xutao
Wang, Jianlu
Chu, Junhao
Huang, Hai
description III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circuits. Despite extensive studies on the properties of InAs nanowires, their photoresponse remains intricate, displaying bipolar behavior (i.e., positive and negative photoresponse) within the same device under varying conditions. However, the underlying driving mechanism remains unclear. In this work, we have systematically studied the transition between the negative photoresponse and positive photoresponse in the InAs nanowire photodetector under different conditions. We found the bipolar photoresponse is directly related to the occupation status of the surface trap states, and it could be effectively regulated by the gate voltage, power intensity, as well as the illumination duration. Furthermore, we developed a waveguide-integrated InAs nanowire photodetector using electron photoresist with an optical loss as low as 0.122 dB/μm. This achievement underscores its potential for application in photonic integrated photodetectors, laying the groundwork for future integration of InAs nanowire photodetectors into photonic integrated circuits.
doi_str_mv 10.1063/5.0196228
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2937061695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937061695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsH3yDgSWHrZLPZ3RxLsVooCKLgbclmJ-2WmqxJavHtjbZnT8PAxzfz_4RcM5gwKPm9mACTZZ7XJ2TEoKoyzlh9SkYAwLNSCnZOLkLYpFXknI_I-wuudlsVe7uicY207Qe3VZ56DIOzAakzdGGngVpl3b73SIe1i67DiDo6T5Xt6F59JUnfIe1txJVPNmcvyZlR24BXxzkmb_OH19lTtnx-XMymy0zndRUzLqAWUtZQtR2DIv0FRSc4MwY4F7XgWrTSaImoQGvDpGmLCgueVyjaouN8TG4O3sG7zx2G2Gzcztt0ssklr6BkKXWibg-U9i4Ej6YZfP-h_HfDoPktrhHNsbjE3h3YoPv4l-Uf-AeOTG02</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937061695</pqid></control><display><type>article</type><title>Regulating the bipolar response of InAs nanowire photodetector and waveguide integration</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics(アメリカ物理学協会)</source><creator>Wang, Zhiqiang ; Liu, Liwei ; Zhong, Zhipeng ; Li, Xiang ; Chen, Yan ; Zhang, Junju ; Shi, Wu ; Zhang, Xutao ; Wang, Jianlu ; Chu, Junhao ; Huang, Hai</creator><creatorcontrib>Wang, Zhiqiang ; Liu, Liwei ; Zhong, Zhipeng ; Li, Xiang ; Chen, Yan ; Zhang, Junju ; Shi, Wu ; Zhang, Xutao ; Wang, Jianlu ; Chu, Junhao ; Huang, Hai</creatorcontrib><description>III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circuits. Despite extensive studies on the properties of InAs nanowires, their photoresponse remains intricate, displaying bipolar behavior (i.e., positive and negative photoresponse) within the same device under varying conditions. However, the underlying driving mechanism remains unclear. In this work, we have systematically studied the transition between the negative photoresponse and positive photoresponse in the InAs nanowire photodetector under different conditions. We found the bipolar photoresponse is directly related to the occupation status of the surface trap states, and it could be effectively regulated by the gate voltage, power intensity, as well as the illumination duration. Furthermore, we developed a waveguide-integrated InAs nanowire photodetector using electron photoresist with an optical loss as low as 0.122 dB/μm. This achievement underscores its potential for application in photonic integrated photodetectors, laying the groundwork for future integration of InAs nanowire photodetectors into photonic integrated circuits.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0196228</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier mobility ; Indium arsenides ; Integrated circuits ; Nanowires ; Optoelectronics ; Photometers ; Photonic band gaps ; Photonics ; Photoresists ; Waveguides</subject><ispartof>Applied physics letters, 2024-03, Vol.124 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33</cites><orcidid>0000-0002-0388-6148 ; 0009-0007-5812-7759 ; 0000-0002-6037-4544 ; 0000-0003-1867-9296 ; 0000-0001-5259-5745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0196228$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Liu, Liwei</creatorcontrib><creatorcontrib>Zhong, Zhipeng</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Junju</creatorcontrib><creatorcontrib>Shi, Wu</creatorcontrib><creatorcontrib>Zhang, Xutao</creatorcontrib><creatorcontrib>Wang, Jianlu</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><title>Regulating the bipolar response of InAs nanowire photodetector and waveguide integration</title><title>Applied physics letters</title><description>III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circuits. Despite extensive studies on the properties of InAs nanowires, their photoresponse remains intricate, displaying bipolar behavior (i.e., positive and negative photoresponse) within the same device under varying conditions. However, the underlying driving mechanism remains unclear. In this work, we have systematically studied the transition between the negative photoresponse and positive photoresponse in the InAs nanowire photodetector under different conditions. We found the bipolar photoresponse is directly related to the occupation status of the surface trap states, and it could be effectively regulated by the gate voltage, power intensity, as well as the illumination duration. Furthermore, we developed a waveguide-integrated InAs nanowire photodetector using electron photoresist with an optical loss as low as 0.122 dB/μm. This achievement underscores its potential for application in photonic integrated photodetectors, laying the groundwork for future integration of InAs nanowire photodetectors into photonic integrated circuits.</description><subject>Carrier mobility</subject><subject>Indium arsenides</subject><subject>Integrated circuits</subject><subject>Nanowires</subject><subject>Optoelectronics</subject><subject>Photometers</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Photoresists</subject><subject>Waveguides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsH3yDgSWHrZLPZ3RxLsVooCKLgbclmJ-2WmqxJavHtjbZnT8PAxzfz_4RcM5gwKPm9mACTZZ7XJ2TEoKoyzlh9SkYAwLNSCnZOLkLYpFXknI_I-wuudlsVe7uicY207Qe3VZ56DIOzAakzdGGngVpl3b73SIe1i67DiDo6T5Xt6F59JUnfIe1txJVPNmcvyZlR24BXxzkmb_OH19lTtnx-XMymy0zndRUzLqAWUtZQtR2DIv0FRSc4MwY4F7XgWrTSaImoQGvDpGmLCgueVyjaouN8TG4O3sG7zx2G2Gzcztt0ssklr6BkKXWibg-U9i4Ej6YZfP-h_HfDoPktrhHNsbjE3h3YoPv4l-Uf-AeOTG02</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Wang, Zhiqiang</creator><creator>Liu, Liwei</creator><creator>Zhong, Zhipeng</creator><creator>Li, Xiang</creator><creator>Chen, Yan</creator><creator>Zhang, Junju</creator><creator>Shi, Wu</creator><creator>Zhang, Xutao</creator><creator>Wang, Jianlu</creator><creator>Chu, Junhao</creator><creator>Huang, Hai</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0388-6148</orcidid><orcidid>https://orcid.org/0009-0007-5812-7759</orcidid><orcidid>https://orcid.org/0000-0002-6037-4544</orcidid><orcidid>https://orcid.org/0000-0003-1867-9296</orcidid><orcidid>https://orcid.org/0000-0001-5259-5745</orcidid></search><sort><creationdate>20240304</creationdate><title>Regulating the bipolar response of InAs nanowire photodetector and waveguide integration</title><author>Wang, Zhiqiang ; Liu, Liwei ; Zhong, Zhipeng ; Li, Xiang ; Chen, Yan ; Zhang, Junju ; Shi, Wu ; Zhang, Xutao ; Wang, Jianlu ; Chu, Junhao ; Huang, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier mobility</topic><topic>Indium arsenides</topic><topic>Integrated circuits</topic><topic>Nanowires</topic><topic>Optoelectronics</topic><topic>Photometers</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Photoresists</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Liu, Liwei</creatorcontrib><creatorcontrib>Zhong, Zhipeng</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Junju</creatorcontrib><creatorcontrib>Shi, Wu</creatorcontrib><creatorcontrib>Zhang, Xutao</creatorcontrib><creatorcontrib>Wang, Jianlu</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiqiang</au><au>Liu, Liwei</au><au>Zhong, Zhipeng</au><au>Li, Xiang</au><au>Chen, Yan</au><au>Zhang, Junju</au><au>Shi, Wu</au><au>Zhang, Xutao</au><au>Wang, Jianlu</au><au>Chu, Junhao</au><au>Huang, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating the bipolar response of InAs nanowire photodetector and waveguide integration</atitle><jtitle>Applied physics letters</jtitle><date>2024-03-04</date><risdate>2024</risdate><volume>124</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circuits. Despite extensive studies on the properties of InAs nanowires, their photoresponse remains intricate, displaying bipolar behavior (i.e., positive and negative photoresponse) within the same device under varying conditions. However, the underlying driving mechanism remains unclear. In this work, we have systematically studied the transition between the negative photoresponse and positive photoresponse in the InAs nanowire photodetector under different conditions. We found the bipolar photoresponse is directly related to the occupation status of the surface trap states, and it could be effectively regulated by the gate voltage, power intensity, as well as the illumination duration. Furthermore, we developed a waveguide-integrated InAs nanowire photodetector using electron photoresist with an optical loss as low as 0.122 dB/μm. This achievement underscores its potential for application in photonic integrated photodetectors, laying the groundwork for future integration of InAs nanowire photodetectors into photonic integrated circuits.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0196228</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0388-6148</orcidid><orcidid>https://orcid.org/0009-0007-5812-7759</orcidid><orcidid>https://orcid.org/0000-0002-6037-4544</orcidid><orcidid>https://orcid.org/0000-0003-1867-9296</orcidid><orcidid>https://orcid.org/0000-0001-5259-5745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-03, Vol.124 (10)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2937061695
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics(アメリカ物理学協会)
subjects Carrier mobility
Indium arsenides
Integrated circuits
Nanowires
Optoelectronics
Photometers
Photonic band gaps
Photonics
Photoresists
Waveguides
title Regulating the bipolar response of InAs nanowire photodetector and waveguide integration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20the%20bipolar%20response%20of%20InAs%20nanowire%20photodetector%20and%20waveguide%20integration&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Zhiqiang&rft.date=2024-03-04&rft.volume=124&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0196228&rft_dat=%3Cproquest_scita%3E2937061695%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937061695&rft_id=info:pmid/&rfr_iscdi=true