Loading…
Regulating the bipolar response of InAs nanowire photodetector and waveguide integration
III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circ...
Saved in:
Published in: | Applied physics letters 2024-03, Vol.124 (10) |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 124 |
creator | Wang, Zhiqiang Liu, Liwei Zhong, Zhipeng Li, Xiang Chen, Yan Zhang, Junju Shi, Wu Zhang, Xutao Wang, Jianlu Chu, Junhao Huang, Hai |
description | III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circuits. Despite extensive studies on the properties of InAs nanowires, their photoresponse remains intricate, displaying bipolar behavior (i.e., positive and negative photoresponse) within the same device under varying conditions. However, the underlying driving mechanism remains unclear. In this work, we have systematically studied the transition between the negative photoresponse and positive photoresponse in the InAs nanowire photodetector under different conditions. We found the bipolar photoresponse is directly related to the occupation status of the surface trap states, and it could be effectively regulated by the gate voltage, power intensity, as well as the illumination duration. Furthermore, we developed a waveguide-integrated InAs nanowire photodetector using electron photoresist with an optical loss as low as 0.122 dB/μm. This achievement underscores its potential for application in photonic integrated photodetectors, laying the groundwork for future integration of InAs nanowire photodetectors into photonic integrated circuits. |
doi_str_mv | 10.1063/5.0196228 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2937061695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937061695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsH3yDgSWHrZLPZ3RxLsVooCKLgbclmJ-2WmqxJavHtjbZnT8PAxzfz_4RcM5gwKPm9mACTZZ7XJ2TEoKoyzlh9SkYAwLNSCnZOLkLYpFXknI_I-wuudlsVe7uicY207Qe3VZ56DIOzAakzdGGngVpl3b73SIe1i67DiDo6T5Xt6F59JUnfIe1txJVPNmcvyZlR24BXxzkmb_OH19lTtnx-XMymy0zndRUzLqAWUtZQtR2DIv0FRSc4MwY4F7XgWrTSaImoQGvDpGmLCgueVyjaouN8TG4O3sG7zx2G2Gzcztt0ssklr6BkKXWibg-U9i4Ej6YZfP-h_HfDoPktrhHNsbjE3h3YoPv4l-Uf-AeOTG02</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937061695</pqid></control><display><type>article</type><title>Regulating the bipolar response of InAs nanowire photodetector and waveguide integration</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics(アメリカ物理学協会)</source><creator>Wang, Zhiqiang ; Liu, Liwei ; Zhong, Zhipeng ; Li, Xiang ; Chen, Yan ; Zhang, Junju ; Shi, Wu ; Zhang, Xutao ; Wang, Jianlu ; Chu, Junhao ; Huang, Hai</creator><creatorcontrib>Wang, Zhiqiang ; Liu, Liwei ; Zhong, Zhipeng ; Li, Xiang ; Chen, Yan ; Zhang, Junju ; Shi, Wu ; Zhang, Xutao ; Wang, Jianlu ; Chu, Junhao ; Huang, Hai</creatorcontrib><description>III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circuits. Despite extensive studies on the properties of InAs nanowires, their photoresponse remains intricate, displaying bipolar behavior (i.e., positive and negative photoresponse) within the same device under varying conditions. However, the underlying driving mechanism remains unclear. In this work, we have systematically studied the transition between the negative photoresponse and positive photoresponse in the InAs nanowire photodetector under different conditions. We found the bipolar photoresponse is directly related to the occupation status of the surface trap states, and it could be effectively regulated by the gate voltage, power intensity, as well as the illumination duration. Furthermore, we developed a waveguide-integrated InAs nanowire photodetector using electron photoresist with an optical loss as low as 0.122 dB/μm. This achievement underscores its potential for application in photonic integrated photodetectors, laying the groundwork for future integration of InAs nanowire photodetectors into photonic integrated circuits.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0196228</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carrier mobility ; Indium arsenides ; Integrated circuits ; Nanowires ; Optoelectronics ; Photometers ; Photonic band gaps ; Photonics ; Photoresists ; Waveguides</subject><ispartof>Applied physics letters, 2024-03, Vol.124 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33</cites><orcidid>0000-0002-0388-6148 ; 0009-0007-5812-7759 ; 0000-0002-6037-4544 ; 0000-0003-1867-9296 ; 0000-0001-5259-5745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0196228$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Liu, Liwei</creatorcontrib><creatorcontrib>Zhong, Zhipeng</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Junju</creatorcontrib><creatorcontrib>Shi, Wu</creatorcontrib><creatorcontrib>Zhang, Xutao</creatorcontrib><creatorcontrib>Wang, Jianlu</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><title>Regulating the bipolar response of InAs nanowire photodetector and waveguide integration</title><title>Applied physics letters</title><description>III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circuits. Despite extensive studies on the properties of InAs nanowires, their photoresponse remains intricate, displaying bipolar behavior (i.e., positive and negative photoresponse) within the same device under varying conditions. However, the underlying driving mechanism remains unclear. In this work, we have systematically studied the transition between the negative photoresponse and positive photoresponse in the InAs nanowire photodetector under different conditions. We found the bipolar photoresponse is directly related to the occupation status of the surface trap states, and it could be effectively regulated by the gate voltage, power intensity, as well as the illumination duration. Furthermore, we developed a waveguide-integrated InAs nanowire photodetector using electron photoresist with an optical loss as low as 0.122 dB/μm. This achievement underscores its potential for application in photonic integrated photodetectors, laying the groundwork for future integration of InAs nanowire photodetectors into photonic integrated circuits.</description><subject>Carrier mobility</subject><subject>Indium arsenides</subject><subject>Integrated circuits</subject><subject>Nanowires</subject><subject>Optoelectronics</subject><subject>Photometers</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Photoresists</subject><subject>Waveguides</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsH3yDgSWHrZLPZ3RxLsVooCKLgbclmJ-2WmqxJavHtjbZnT8PAxzfz_4RcM5gwKPm9mACTZZ7XJ2TEoKoyzlh9SkYAwLNSCnZOLkLYpFXknI_I-wuudlsVe7uicY207Qe3VZ56DIOzAakzdGGngVpl3b73SIe1i67DiDo6T5Xt6F59JUnfIe1txJVPNmcvyZlR24BXxzkmb_OH19lTtnx-XMymy0zndRUzLqAWUtZQtR2DIv0FRSc4MwY4F7XgWrTSaImoQGvDpGmLCgueVyjaouN8TG4O3sG7zx2G2Gzcztt0ssklr6BkKXWibg-U9i4Ej6YZfP-h_HfDoPktrhHNsbjE3h3YoPv4l-Uf-AeOTG02</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Wang, Zhiqiang</creator><creator>Liu, Liwei</creator><creator>Zhong, Zhipeng</creator><creator>Li, Xiang</creator><creator>Chen, Yan</creator><creator>Zhang, Junju</creator><creator>Shi, Wu</creator><creator>Zhang, Xutao</creator><creator>Wang, Jianlu</creator><creator>Chu, Junhao</creator><creator>Huang, Hai</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0388-6148</orcidid><orcidid>https://orcid.org/0009-0007-5812-7759</orcidid><orcidid>https://orcid.org/0000-0002-6037-4544</orcidid><orcidid>https://orcid.org/0000-0003-1867-9296</orcidid><orcidid>https://orcid.org/0000-0001-5259-5745</orcidid></search><sort><creationdate>20240304</creationdate><title>Regulating the bipolar response of InAs nanowire photodetector and waveguide integration</title><author>Wang, Zhiqiang ; Liu, Liwei ; Zhong, Zhipeng ; Li, Xiang ; Chen, Yan ; Zhang, Junju ; Shi, Wu ; Zhang, Xutao ; Wang, Jianlu ; Chu, Junhao ; Huang, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier mobility</topic><topic>Indium arsenides</topic><topic>Integrated circuits</topic><topic>Nanowires</topic><topic>Optoelectronics</topic><topic>Photometers</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Photoresists</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiqiang</creatorcontrib><creatorcontrib>Liu, Liwei</creatorcontrib><creatorcontrib>Zhong, Zhipeng</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Zhang, Junju</creatorcontrib><creatorcontrib>Shi, Wu</creatorcontrib><creatorcontrib>Zhang, Xutao</creatorcontrib><creatorcontrib>Wang, Jianlu</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><creatorcontrib>Huang, Hai</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiqiang</au><au>Liu, Liwei</au><au>Zhong, Zhipeng</au><au>Li, Xiang</au><au>Chen, Yan</au><au>Zhang, Junju</au><au>Shi, Wu</au><au>Zhang, Xutao</au><au>Wang, Jianlu</au><au>Chu, Junhao</au><au>Huang, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating the bipolar response of InAs nanowire photodetector and waveguide integration</atitle><jtitle>Applied physics letters</jtitle><date>2024-03-04</date><risdate>2024</risdate><volume>124</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>III–V Indium Arsenide (InAs) nanowire photodetectors have attracted intensive research attention due to their high carrier mobility, direct and narrow bandgap, and nanoscale dimensions, offering immense potential in nanoscale optoelectronics, particularly for applications in photonic integrated circuits. Despite extensive studies on the properties of InAs nanowires, their photoresponse remains intricate, displaying bipolar behavior (i.e., positive and negative photoresponse) within the same device under varying conditions. However, the underlying driving mechanism remains unclear. In this work, we have systematically studied the transition between the negative photoresponse and positive photoresponse in the InAs nanowire photodetector under different conditions. We found the bipolar photoresponse is directly related to the occupation status of the surface trap states, and it could be effectively regulated by the gate voltage, power intensity, as well as the illumination duration. Furthermore, we developed a waveguide-integrated InAs nanowire photodetector using electron photoresist with an optical loss as low as 0.122 dB/μm. This achievement underscores its potential for application in photonic integrated photodetectors, laying the groundwork for future integration of InAs nanowire photodetectors into photonic integrated circuits.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0196228</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0388-6148</orcidid><orcidid>https://orcid.org/0009-0007-5812-7759</orcidid><orcidid>https://orcid.org/0000-0002-6037-4544</orcidid><orcidid>https://orcid.org/0000-0003-1867-9296</orcidid><orcidid>https://orcid.org/0000-0001-5259-5745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2024-03, Vol.124 (10) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2937061695 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics(アメリカ物理学協会) |
subjects | Carrier mobility Indium arsenides Integrated circuits Nanowires Optoelectronics Photometers Photonic band gaps Photonics Photoresists Waveguides |
title | Regulating the bipolar response of InAs nanowire photodetector and waveguide integration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20the%20bipolar%20response%20of%20InAs%20nanowire%20photodetector%20and%20waveguide%20integration&rft.jtitle=Applied%20physics%20letters&rft.au=Wang,%20Zhiqiang&rft.date=2024-03-04&rft.volume=124&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0196228&rft_dat=%3Cproquest_scita%3E2937061695%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-3508599807bd10400004d531ff0335853c5b9fc9eea0ccf19fb47e4327e5b4d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937061695&rft_id=info:pmid/&rfr_iscdi=true |