Loading…
LBM curved boundary treatments for pulsatile flow on convective heat transfer and friction factor in corrugated channels
The present research investigates heat transfer and the flow characteristics of periodically corrugated wavy channels numerically under pulsatile flow conditions. The numerical method used here is Lattice Boltzmann Method (LBM), and the validation of the study is done by Ansys-Fluent which is finite...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2024-03, Vol.238 (6), p.2489-2512 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The present research investigates heat transfer and the flow characteristics of periodically corrugated wavy channels numerically under pulsatile flow conditions. The numerical method used here is Lattice Boltzmann Method (LBM), and the validation of the study is done by Ansys-Fluent which is finite volume based commercial Computational Fluid Dynamics (CFD) code. For modeling walls, bounce-back method, namely, staircase method and three different curved boundary treatments, which are extrapolation, Filippova-Hänel (FH) and Mei-Luo-Shy (MLS), are used. For modeling constant temperature at walls, staircase method and the same curved wall treatments are used. Corrugated channels have a sharp wavy peak, and its inclination angle is 30°. Two different minimum channel heights are considered, which are 5 and 10 mm in corrugated channels. Flow regime is assumed as laminar (50 |
---|---|
ISSN: | 0954-4062 2041-2983 |
DOI: | 10.1177/09544062231194904 |