Loading…

Functional Interpolation for Relative Positions Improves Long Context Transformers

Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Authors: Li, Shanda, You, Chong, Guru Guruganesh, Ainslie, Joshua, Ontanon, Santiago, Manzil Zaheer, Sanghai, Sumit, Yang, Yiming, Kumar, Sanjiv, Bhojanapalli, Srinadh
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Shanda
You, Chong
Guru Guruganesh
Ainslie, Joshua
Ontanon, Santiago
Manzil Zaheer
Sanghai, Sumit
Yang, Yiming
Kumar, Sanjiv
Bhojanapalli, Srinadh
description Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937496654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937496654</sourcerecordid><originalsourceid>FETCH-proquest_journals_29374966543</originalsourceid><addsrcrecordid>eNqNjc0KgkAUhYcgSMp3uNBasBl_ci1JQosQ9zLIGIrOtbmj9PiN0AO0OnyH83F2zONCXIJrxPmB-URDGIY8SXkcC49VxaJb26OWI5TaKjPjKDeGDg1UaoNVwROp31qCcpoNrorggfoFOTrnY6E2UpMzJmXoxPadHEn5vzyyc3Gr83vgxPeiyDYDLsYdUsMzkUZZksSR-G_1BXqMQNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937496654</pqid></control><display><type>article</type><title>Functional Interpolation for Relative Positions Improves Long Context Transformers</title><source>ProQuest - Publicly Available Content Database</source><creator>Li, Shanda ; You, Chong ; Guru Guruganesh ; Ainslie, Joshua ; Ontanon, Santiago ; Manzil Zaheer ; Sanghai, Sumit ; Yang, Yiming ; Kumar, Sanjiv ; Bhojanapalli, Srinadh</creator><creatorcontrib>Li, Shanda ; You, Chong ; Guru Guruganesh ; Ainslie, Joshua ; Ontanon, Santiago ; Manzil Zaheer ; Sanghai, Sumit ; Yang, Yiming ; Kumar, Sanjiv ; Bhojanapalli, Srinadh</creatorcontrib><description>Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Context ; Interpolation ; Training</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2937496654?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Shanda</creatorcontrib><creatorcontrib>You, Chong</creatorcontrib><creatorcontrib>Guru Guruganesh</creatorcontrib><creatorcontrib>Ainslie, Joshua</creatorcontrib><creatorcontrib>Ontanon, Santiago</creatorcontrib><creatorcontrib>Manzil Zaheer</creatorcontrib><creatorcontrib>Sanghai, Sumit</creatorcontrib><creatorcontrib>Yang, Yiming</creatorcontrib><creatorcontrib>Kumar, Sanjiv</creatorcontrib><creatorcontrib>Bhojanapalli, Srinadh</creatorcontrib><title>Functional Interpolation for Relative Positions Improves Long Context Transformers</title><title>arXiv.org</title><description>Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.</description><subject>Coding</subject><subject>Context</subject><subject>Interpolation</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjc0KgkAUhYcgSMp3uNBasBl_ci1JQosQ9zLIGIrOtbmj9PiN0AO0OnyH83F2zONCXIJrxPmB-URDGIY8SXkcC49VxaJb26OWI5TaKjPjKDeGDg1UaoNVwROp31qCcpoNrorggfoFOTrnY6E2UpMzJmXoxPadHEn5vzyyc3Gr83vgxPeiyDYDLsYdUsMzkUZZksSR-G_1BXqMQNs</recordid><startdate>20240303</startdate><enddate>20240303</enddate><creator>Li, Shanda</creator><creator>You, Chong</creator><creator>Guru Guruganesh</creator><creator>Ainslie, Joshua</creator><creator>Ontanon, Santiago</creator><creator>Manzil Zaheer</creator><creator>Sanghai, Sumit</creator><creator>Yang, Yiming</creator><creator>Kumar, Sanjiv</creator><creator>Bhojanapalli, Srinadh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240303</creationdate><title>Functional Interpolation for Relative Positions Improves Long Context Transformers</title><author>Li, Shanda ; You, Chong ; Guru Guruganesh ; Ainslie, Joshua ; Ontanon, Santiago ; Manzil Zaheer ; Sanghai, Sumit ; Yang, Yiming ; Kumar, Sanjiv ; Bhojanapalli, Srinadh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29374966543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding</topic><topic>Context</topic><topic>Interpolation</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Shanda</creatorcontrib><creatorcontrib>You, Chong</creatorcontrib><creatorcontrib>Guru Guruganesh</creatorcontrib><creatorcontrib>Ainslie, Joshua</creatorcontrib><creatorcontrib>Ontanon, Santiago</creatorcontrib><creatorcontrib>Manzil Zaheer</creatorcontrib><creatorcontrib>Sanghai, Sumit</creatorcontrib><creatorcontrib>Yang, Yiming</creatorcontrib><creatorcontrib>Kumar, Sanjiv</creatorcontrib><creatorcontrib>Bhojanapalli, Srinadh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shanda</au><au>You, Chong</au><au>Guru Guruganesh</au><au>Ainslie, Joshua</au><au>Ontanon, Santiago</au><au>Manzil Zaheer</au><au>Sanghai, Sumit</au><au>Yang, Yiming</au><au>Kumar, Sanjiv</au><au>Bhojanapalli, Srinadh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Functional Interpolation for Relative Positions Improves Long Context Transformers</atitle><jtitle>arXiv.org</jtitle><date>2024-03-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2937496654
source ProQuest - Publicly Available Content Database
subjects Coding
Context
Interpolation
Training
title Functional Interpolation for Relative Positions Improves Long Context Transformers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Functional%20Interpolation%20for%20Relative%20Positions%20Improves%20Long%20Context%20Transformers&rft.jtitle=arXiv.org&rft.au=Li,%20Shanda&rft.date=2024-03-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2937496654%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29374966543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937496654&rft_id=info:pmid/&rfr_iscdi=true