Loading…
Functional Interpolation for Relative Positions Improves Long Context Transformers
Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Shanda You, Chong Guru Guruganesh Ainslie, Joshua Ontanon, Santiago Manzil Zaheer Sanghai, Sumit Yang, Yiming Kumar, Sanjiv Bhojanapalli, Srinadh |
description | Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2937496654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937496654</sourcerecordid><originalsourceid>FETCH-proquest_journals_29374966543</originalsourceid><addsrcrecordid>eNqNjc0KgkAUhYcgSMp3uNBasBl_ci1JQosQ9zLIGIrOtbmj9PiN0AO0OnyH83F2zONCXIJrxPmB-URDGIY8SXkcC49VxaJb26OWI5TaKjPjKDeGDg1UaoNVwROp31qCcpoNrorggfoFOTrnY6E2UpMzJmXoxPadHEn5vzyyc3Gr83vgxPeiyDYDLsYdUsMzkUZZksSR-G_1BXqMQNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937496654</pqid></control><display><type>article</type><title>Functional Interpolation for Relative Positions Improves Long Context Transformers</title><source>ProQuest - Publicly Available Content Database</source><creator>Li, Shanda ; You, Chong ; Guru Guruganesh ; Ainslie, Joshua ; Ontanon, Santiago ; Manzil Zaheer ; Sanghai, Sumit ; Yang, Yiming ; Kumar, Sanjiv ; Bhojanapalli, Srinadh</creator><creatorcontrib>Li, Shanda ; You, Chong ; Guru Guruganesh ; Ainslie, Joshua ; Ontanon, Santiago ; Manzil Zaheer ; Sanghai, Sumit ; Yang, Yiming ; Kumar, Sanjiv ; Bhojanapalli, Srinadh</creatorcontrib><description>Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Context ; Interpolation ; Training</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2937496654?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Shanda</creatorcontrib><creatorcontrib>You, Chong</creatorcontrib><creatorcontrib>Guru Guruganesh</creatorcontrib><creatorcontrib>Ainslie, Joshua</creatorcontrib><creatorcontrib>Ontanon, Santiago</creatorcontrib><creatorcontrib>Manzil Zaheer</creatorcontrib><creatorcontrib>Sanghai, Sumit</creatorcontrib><creatorcontrib>Yang, Yiming</creatorcontrib><creatorcontrib>Kumar, Sanjiv</creatorcontrib><creatorcontrib>Bhojanapalli, Srinadh</creatorcontrib><title>Functional Interpolation for Relative Positions Improves Long Context Transformers</title><title>arXiv.org</title><description>Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.</description><subject>Coding</subject><subject>Context</subject><subject>Interpolation</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjc0KgkAUhYcgSMp3uNBasBl_ci1JQosQ9zLIGIrOtbmj9PiN0AO0OnyH83F2zONCXIJrxPmB-URDGIY8SXkcC49VxaJb26OWI5TaKjPjKDeGDg1UaoNVwROp31qCcpoNrorggfoFOTrnY6E2UpMzJmXoxPadHEn5vzyyc3Gr83vgxPeiyDYDLsYdUsMzkUZZksSR-G_1BXqMQNs</recordid><startdate>20240303</startdate><enddate>20240303</enddate><creator>Li, Shanda</creator><creator>You, Chong</creator><creator>Guru Guruganesh</creator><creator>Ainslie, Joshua</creator><creator>Ontanon, Santiago</creator><creator>Manzil Zaheer</creator><creator>Sanghai, Sumit</creator><creator>Yang, Yiming</creator><creator>Kumar, Sanjiv</creator><creator>Bhojanapalli, Srinadh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240303</creationdate><title>Functional Interpolation for Relative Positions Improves Long Context Transformers</title><author>Li, Shanda ; You, Chong ; Guru Guruganesh ; Ainslie, Joshua ; Ontanon, Santiago ; Manzil Zaheer ; Sanghai, Sumit ; Yang, Yiming ; Kumar, Sanjiv ; Bhojanapalli, Srinadh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29374966543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding</topic><topic>Context</topic><topic>Interpolation</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Shanda</creatorcontrib><creatorcontrib>You, Chong</creatorcontrib><creatorcontrib>Guru Guruganesh</creatorcontrib><creatorcontrib>Ainslie, Joshua</creatorcontrib><creatorcontrib>Ontanon, Santiago</creatorcontrib><creatorcontrib>Manzil Zaheer</creatorcontrib><creatorcontrib>Sanghai, Sumit</creatorcontrib><creatorcontrib>Yang, Yiming</creatorcontrib><creatorcontrib>Kumar, Sanjiv</creatorcontrib><creatorcontrib>Bhojanapalli, Srinadh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shanda</au><au>You, Chong</au><au>Guru Guruganesh</au><au>Ainslie, Joshua</au><au>Ontanon, Santiago</au><au>Manzil Zaheer</au><au>Sanghai, Sumit</au><au>Yang, Yiming</au><au>Kumar, Sanjiv</au><au>Bhojanapalli, Srinadh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Functional Interpolation for Relative Positions Improves Long Context Transformers</atitle><jtitle>arXiv.org</jtitle><date>2024-03-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2937496654 |
source | ProQuest - Publicly Available Content Database |
subjects | Coding Context Interpolation Training |
title | Functional Interpolation for Relative Positions Improves Long Context Transformers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Functional%20Interpolation%20for%20Relative%20Positions%20Improves%20Long%20Context%20Transformers&rft.jtitle=arXiv.org&rft.au=Li,%20Shanda&rft.date=2024-03-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2937496654%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29374966543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937496654&rft_id=info:pmid/&rfr_iscdi=true |