Loading…

Bootstrapping Extreme Value Estimators

This article develops a bootstrap analogue of the well-known asymptotic expansion of the tail quantile process in extreme value theory. One application of this result is to construct confidence intervals for estimators of the extreme value index such as the Probability Weighted Moment (PWM) estimato...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association 2024-01, Vol.119 (545), p.382-393
Main Authors: de Haan, Laurens, Zhou, Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-d9ce0dd25cf1bf99aa42b80d9ce704b1b19a9e79c3df0fc5a037301a4a4f12933
cites cdi_FETCH-LOGICAL-c418t-d9ce0dd25cf1bf99aa42b80d9ce704b1b19a9e79c3df0fc5a037301a4a4f12933
container_end_page 393
container_issue 545
container_start_page 382
container_title Journal of the American Statistical Association
container_volume 119
creator de Haan, Laurens
Zhou, Chen
description This article develops a bootstrap analogue of the well-known asymptotic expansion of the tail quantile process in extreme value theory. One application of this result is to construct confidence intervals for estimators of the extreme value index such as the Probability Weighted Moment (PWM) estimator. For the peaks-over-threshold method, we show the bootstrap consistency of the confidence intervals. By contrast, the asymptotic expansion of the quantile process of the bootstrapped block maxima does not lead to a similar consistency result for the PWM estimator using the block maxima method. For both methods, We show by simulations that the sample variance of bootstrapped estimates can be a good approximation for the asymptotic variance of the original estimator. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2022.2120400
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2937538098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937538098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d9ce0dd25cf1bf99aa42b80d9ce704b1b19a9e79c3df0fc5a037301a4a4f12933</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKs_QSgIvm2dXNYkb16oFyj4ouJbyGYT2bLdrJMU7b93l9ZX52Vg5jtnhkPIOYU5BQVXQK8ZFaWeM2BszigDAXBAJrTksmBSfBySycgUI3RMTlJawVBSqQm5vIsxp4y275vuc7b4yejXfvZu242fLVJu1jZHTKfkKNg2-bN9n5K3h8Xr_VOxfHl8vr9dFk5QlYtaOw91zUoXaBW0tlawSsE4liAqWlFttZfa8TpAcKUFLjlQK6wIlGnOp-Ri59tj_Nr4lM0qbrAbTpphLUuuQKuBKneUw5gS-mB6HB7FraFgxkjMXyRmjMTsIxl0Nztd04WIa_sdsa1Ntts2YkDbuSYZ_r_FLwWGZwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937538098</pqid></control><display><type>article</type><title>Bootstrapping Extreme Value Estimators</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor and Francis Science and Technology Collection</source><creator>de Haan, Laurens ; Zhou, Chen</creator><creatorcontrib>de Haan, Laurens ; Zhou, Chen</creatorcontrib><description>This article develops a bootstrap analogue of the well-known asymptotic expansion of the tail quantile process in extreme value theory. One application of this result is to construct confidence intervals for estimators of the extreme value index such as the Probability Weighted Moment (PWM) estimator. For the peaks-over-threshold method, we show the bootstrap consistency of the confidence intervals. By contrast, the asymptotic expansion of the quantile process of the bootstrapped block maxima does not lead to a similar consistency result for the PWM estimator using the block maxima method. For both methods, We show by simulations that the sample variance of bootstrapped estimates can be a good approximation for the asymptotic variance of the original estimator. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2022.2120400</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Asymptotic series ; Block maxima ; Bootstrap method ; Confidence intervals ; Consistency ; Estimators ; Extreme value theory ; Extreme values ; Peak-over-threshold ; Quantiles ; Statistical analysis ; Statistics ; Tail quantile process ; Variance</subject><ispartof>Journal of the American Statistical Association, 2024-01, Vol.119 (545), p.382-393</ispartof><rights>2022 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. 2022</rights><rights>2022 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d9ce0dd25cf1bf99aa42b80d9ce704b1b19a9e79c3df0fc5a037301a4a4f12933</citedby><cites>FETCH-LOGICAL-c418t-d9ce0dd25cf1bf99aa42b80d9ce704b1b19a9e79c3df0fc5a037301a4a4f12933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>de Haan, Laurens</creatorcontrib><creatorcontrib>Zhou, Chen</creatorcontrib><title>Bootstrapping Extreme Value Estimators</title><title>Journal of the American Statistical Association</title><description>This article develops a bootstrap analogue of the well-known asymptotic expansion of the tail quantile process in extreme value theory. One application of this result is to construct confidence intervals for estimators of the extreme value index such as the Probability Weighted Moment (PWM) estimator. For the peaks-over-threshold method, we show the bootstrap consistency of the confidence intervals. By contrast, the asymptotic expansion of the quantile process of the bootstrapped block maxima does not lead to a similar consistency result for the PWM estimator using the block maxima method. For both methods, We show by simulations that the sample variance of bootstrapped estimates can be a good approximation for the asymptotic variance of the original estimator. Supplementary materials for this article are available online.</description><subject>Asymptotic series</subject><subject>Block maxima</subject><subject>Bootstrap method</subject><subject>Confidence intervals</subject><subject>Consistency</subject><subject>Estimators</subject><subject>Extreme value theory</subject><subject>Extreme values</subject><subject>Peak-over-threshold</subject><subject>Quantiles</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Tail quantile process</subject><subject>Variance</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>8BJ</sourceid><recordid>eNp9kFtLAzEQhYMoWKs_QSgIvm2dXNYkb16oFyj4ouJbyGYT2bLdrJMU7b93l9ZX52Vg5jtnhkPIOYU5BQVXQK8ZFaWeM2BszigDAXBAJrTksmBSfBySycgUI3RMTlJawVBSqQm5vIsxp4y275vuc7b4yejXfvZu242fLVJu1jZHTKfkKNg2-bN9n5K3h8Xr_VOxfHl8vr9dFk5QlYtaOw91zUoXaBW0tlawSsE4liAqWlFttZfa8TpAcKUFLjlQK6wIlGnOp-Ri59tj_Nr4lM0qbrAbTpphLUuuQKuBKneUw5gS-mB6HB7FraFgxkjMXyRmjMTsIxl0Nztd04WIa_sdsa1Ntts2YkDbuSYZ_r_FLwWGZwI</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>de Haan, Laurens</creator><creator>Zhou, Chen</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20240102</creationdate><title>Bootstrapping Extreme Value Estimators</title><author>de Haan, Laurens ; Zhou, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d9ce0dd25cf1bf99aa42b80d9ce704b1b19a9e79c3df0fc5a037301a4a4f12933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic series</topic><topic>Block maxima</topic><topic>Bootstrap method</topic><topic>Confidence intervals</topic><topic>Consistency</topic><topic>Estimators</topic><topic>Extreme value theory</topic><topic>Extreme values</topic><topic>Peak-over-threshold</topic><topic>Quantiles</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Tail quantile process</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Haan, Laurens</creatorcontrib><creatorcontrib>Zhou, Chen</creatorcontrib><collection>Taylor &amp; Francis Open Access(OpenAccess)</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Haan, Laurens</au><au>Zhou, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrapping Extreme Value Estimators</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2024-01-02</date><risdate>2024</risdate><volume>119</volume><issue>545</issue><spage>382</spage><epage>393</epage><pages>382-393</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>This article develops a bootstrap analogue of the well-known asymptotic expansion of the tail quantile process in extreme value theory. One application of this result is to construct confidence intervals for estimators of the extreme value index such as the Probability Weighted Moment (PWM) estimator. For the peaks-over-threshold method, we show the bootstrap consistency of the confidence intervals. By contrast, the asymptotic expansion of the quantile process of the bootstrapped block maxima does not lead to a similar consistency result for the PWM estimator using the block maxima method. For both methods, We show by simulations that the sample variance of bootstrapped estimates can be a good approximation for the asymptotic variance of the original estimator. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2022.2120400</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2024-01, Vol.119 (545), p.382-393
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_2937538098
source International Bibliography of the Social Sciences (IBSS); Taylor and Francis Science and Technology Collection
subjects Asymptotic series
Block maxima
Bootstrap method
Confidence intervals
Consistency
Estimators
Extreme value theory
Extreme values
Peak-over-threshold
Quantiles
Statistical analysis
Statistics
Tail quantile process
Variance
title Bootstrapping Extreme Value Estimators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrapping%20Extreme%20Value%20Estimators&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=de%20Haan,%20Laurens&rft.date=2024-01-02&rft.volume=119&rft.issue=545&rft.spage=382&rft.epage=393&rft.pages=382-393&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2022.2120400&rft_dat=%3Cproquest_infor%3E2937538098%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-d9ce0dd25cf1bf99aa42b80d9ce704b1b19a9e79c3df0fc5a037301a4a4f12933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2937538098&rft_id=info:pmid/&rfr_iscdi=true