Loading…
Aiming to a smart agriculture through the electrochemical impedance of a chitosan-molybdate membrane as a function of available phosphate species
Identifying and quantifying accessible nutrients in the soil are critical in agriculture since plants require particular amounts of micro and macronutrients to grow successfully. However, there is no well-defined method for quantifying macronutrients in the field at present. In this work, chitosan a...
Saved in:
Published in: | Journal of applied electrochemistry 2024-04, Vol.54 (4), p.905-915 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-947689616b120dd44c6bfc856f9e437898206a7c2d6a427400696804e4cfc53b3 |
container_end_page | 915 |
container_issue | 4 |
container_start_page | 905 |
container_title | Journal of applied electrochemistry |
container_volume | 54 |
creator | Beltrán-Ortega, M. A. Oropeza-Guzmán, M. T. Calva-Yáñez, J. C. |
description | Identifying and quantifying accessible nutrients in the soil are critical in agriculture since plants require particular amounts of micro and macronutrients to grow successfully. However, there is no well-defined method for quantifying macronutrients in the field at present. In this work, chitosan and chitosan-molybdate membranes were deposited onto stainless steel (SS) and carbon (C) substrates and evaluated as promising candidates for the quantification of phosphorous species available in cultivated soil. The membranes were morphologically and structurally studied by atomic force microscopy and infrared spectroscopy to determine their appearance, roughness, and chemical conformation. Electrochemical impedance spectroscopy was the electrochemical tool used to evaluate the quantification capacity of phosphorus species of the membrane-based electrodes; it was found that the chitosan-molybdate membranes deposited onto the SS/C interface presented the best performance when the electrodes change in charge transfer resistance and chemical capacitance were measured as a function of the concentration of phosphorus species available in a synthetic sample. Thus, based on the presented results, chitosan biosensors have shown the capability of attracting ionic species, which contributes to the minimization of preference zones on the surface of a sensing electrode.
Graphical abstract |
doi_str_mv | 10.1007/s10800-023-02002-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2938501503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938501503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-947689616b120dd44c6bfc856f9e437898206a7c2d6a427400696804e4cfc53b3</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhkVoINtNXiAnQc9uR7Isy8cQ2qYQyCWB3IQsj9dabMuV5JJ9jL5xtNlAbjkMPwzfPwMfIdcMvjOA-kdkoAAK4GUeAF68nJENq2peKFWqL2STd6xQDXu-IF9j3ANAw6XYkP83bnLzjiZPDY2TCYmaXXB2HdMakKYh-HU35ESKI9oUvB1wctaM1E0Ldma2SH2fy3ZwyUczF5MfD21nEtIJpzaYGamJGejX2Sbn5zf8n3GjaUeky-DjMhzpuKB1GC_JeW_GiFfvuSVPv34-3t4V9w-__9ze3BeW15CKRtRSNZLJlnHoOiGsbHurKtk3KMpaNYqDNLXlnTSC1wJANlKBQGF7W5VtuSXfTneX4P-uGJPe-zXM-aXmTakqYBWUmeInygYfY8BeL8FlTQfNQB_V65N6ndXrN_X6JZfKUylmeN5h-Dj9SesV01SJMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938501503</pqid></control><display><type>article</type><title>Aiming to a smart agriculture through the electrochemical impedance of a chitosan-molybdate membrane as a function of available phosphate species</title><source>Springer Nature</source><creator>Beltrán-Ortega, M. A. ; Oropeza-Guzmán, M. T. ; Calva-Yáñez, J. C.</creator><creatorcontrib>Beltrán-Ortega, M. A. ; Oropeza-Guzmán, M. T. ; Calva-Yáñez, J. C.</creatorcontrib><description>Identifying and quantifying accessible nutrients in the soil are critical in agriculture since plants require particular amounts of micro and macronutrients to grow successfully. However, there is no well-defined method for quantifying macronutrients in the field at present. In this work, chitosan and chitosan-molybdate membranes were deposited onto stainless steel (SS) and carbon (C) substrates and evaluated as promising candidates for the quantification of phosphorous species available in cultivated soil. The membranes were morphologically and structurally studied by atomic force microscopy and infrared spectroscopy to determine their appearance, roughness, and chemical conformation. Electrochemical impedance spectroscopy was the electrochemical tool used to evaluate the quantification capacity of phosphorus species of the membrane-based electrodes; it was found that the chitosan-molybdate membranes deposited onto the SS/C interface presented the best performance when the electrodes change in charge transfer resistance and chemical capacitance were measured as a function of the concentration of phosphorus species available in a synthetic sample. Thus, based on the presented results, chitosan biosensors have shown the capability of attracting ionic species, which contributes to the minimization of preference zones on the surface of a sensing electrode.
Graphical abstract</description><identifier>ISSN: 0021-891X</identifier><identifier>EISSN: 1572-8838</identifier><identifier>DOI: 10.1007/s10800-023-02002-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agriculture ; Biosensors ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Chitosan ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Industrial Chemistry/Chemical Engineering ; Infrared spectroscopy ; Membranes ; Nutrients ; Phosphorus ; Physical Chemistry ; Research Article ; Soils ; Spectrum analysis ; Stainless steels ; Substrates</subject><ispartof>Journal of applied electrochemistry, 2024-04, Vol.54 (4), p.905-915</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-947689616b120dd44c6bfc856f9e437898206a7c2d6a427400696804e4cfc53b3</cites><orcidid>0000-0001-8032-5988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beltrán-Ortega, M. A.</creatorcontrib><creatorcontrib>Oropeza-Guzmán, M. T.</creatorcontrib><creatorcontrib>Calva-Yáñez, J. C.</creatorcontrib><title>Aiming to a smart agriculture through the electrochemical impedance of a chitosan-molybdate membrane as a function of available phosphate species</title><title>Journal of applied electrochemistry</title><addtitle>J Appl Electrochem</addtitle><description>Identifying and quantifying accessible nutrients in the soil are critical in agriculture since plants require particular amounts of micro and macronutrients to grow successfully. However, there is no well-defined method for quantifying macronutrients in the field at present. In this work, chitosan and chitosan-molybdate membranes were deposited onto stainless steel (SS) and carbon (C) substrates and evaluated as promising candidates for the quantification of phosphorous species available in cultivated soil. The membranes were morphologically and structurally studied by atomic force microscopy and infrared spectroscopy to determine their appearance, roughness, and chemical conformation. Electrochemical impedance spectroscopy was the electrochemical tool used to evaluate the quantification capacity of phosphorus species of the membrane-based electrodes; it was found that the chitosan-molybdate membranes deposited onto the SS/C interface presented the best performance when the electrodes change in charge transfer resistance and chemical capacitance were measured as a function of the concentration of phosphorus species available in a synthetic sample. Thus, based on the presented results, chitosan biosensors have shown the capability of attracting ionic species, which contributes to the minimization of preference zones on the surface of a sensing electrode.
Graphical abstract</description><subject>Agriculture</subject><subject>Biosensors</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chitosan</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Infrared spectroscopy</subject><subject>Membranes</subject><subject>Nutrients</subject><subject>Phosphorus</subject><subject>Physical Chemistry</subject><subject>Research Article</subject><subject>Soils</subject><subject>Spectrum analysis</subject><subject>Stainless steels</subject><subject>Substrates</subject><issn>0021-891X</issn><issn>1572-8838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQhkVoINtNXiAnQc9uR7Isy8cQ2qYQyCWB3IQsj9dabMuV5JJ9jL5xtNlAbjkMPwzfPwMfIdcMvjOA-kdkoAAK4GUeAF68nJENq2peKFWqL2STd6xQDXu-IF9j3ANAw6XYkP83bnLzjiZPDY2TCYmaXXB2HdMakKYh-HU35ESKI9oUvB1wctaM1E0Ldma2SH2fy3ZwyUczF5MfD21nEtIJpzaYGamJGejX2Sbn5zf8n3GjaUeky-DjMhzpuKB1GC_JeW_GiFfvuSVPv34-3t4V9w-__9ze3BeW15CKRtRSNZLJlnHoOiGsbHurKtk3KMpaNYqDNLXlnTSC1wJANlKBQGF7W5VtuSXfTneX4P-uGJPe-zXM-aXmTakqYBWUmeInygYfY8BeL8FlTQfNQB_V65N6ndXrN_X6JZfKUylmeN5h-Dj9SesV01SJMg</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Beltrán-Ortega, M. A.</creator><creator>Oropeza-Guzmán, M. T.</creator><creator>Calva-Yáñez, J. C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8032-5988</orcidid></search><sort><creationdate>20240401</creationdate><title>Aiming to a smart agriculture through the electrochemical impedance of a chitosan-molybdate membrane as a function of available phosphate species</title><author>Beltrán-Ortega, M. A. ; Oropeza-Guzmán, M. T. ; Calva-Yáñez, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-947689616b120dd44c6bfc856f9e437898206a7c2d6a427400696804e4cfc53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agriculture</topic><topic>Biosensors</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chitosan</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Infrared spectroscopy</topic><topic>Membranes</topic><topic>Nutrients</topic><topic>Phosphorus</topic><topic>Physical Chemistry</topic><topic>Research Article</topic><topic>Soils</topic><topic>Spectrum analysis</topic><topic>Stainless steels</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán-Ortega, M. A.</creatorcontrib><creatorcontrib>Oropeza-Guzmán, M. T.</creatorcontrib><creatorcontrib>Calva-Yáñez, J. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán-Ortega, M. A.</au><au>Oropeza-Guzmán, M. T.</au><au>Calva-Yáñez, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aiming to a smart agriculture through the electrochemical impedance of a chitosan-molybdate membrane as a function of available phosphate species</atitle><jtitle>Journal of applied electrochemistry</jtitle><stitle>J Appl Electrochem</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>54</volume><issue>4</issue><spage>905</spage><epage>915</epage><pages>905-915</pages><issn>0021-891X</issn><eissn>1572-8838</eissn><abstract>Identifying and quantifying accessible nutrients in the soil are critical in agriculture since plants require particular amounts of micro and macronutrients to grow successfully. However, there is no well-defined method for quantifying macronutrients in the field at present. In this work, chitosan and chitosan-molybdate membranes were deposited onto stainless steel (SS) and carbon (C) substrates and evaluated as promising candidates for the quantification of phosphorous species available in cultivated soil. The membranes were morphologically and structurally studied by atomic force microscopy and infrared spectroscopy to determine their appearance, roughness, and chemical conformation. Electrochemical impedance spectroscopy was the electrochemical tool used to evaluate the quantification capacity of phosphorus species of the membrane-based electrodes; it was found that the chitosan-molybdate membranes deposited onto the SS/C interface presented the best performance when the electrodes change in charge transfer resistance and chemical capacitance were measured as a function of the concentration of phosphorus species available in a synthetic sample. Thus, based on the presented results, chitosan biosensors have shown the capability of attracting ionic species, which contributes to the minimization of preference zones on the surface of a sensing electrode.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10800-023-02002-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8032-5988</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-891X |
ispartof | Journal of applied electrochemistry, 2024-04, Vol.54 (4), p.905-915 |
issn | 0021-891X 1572-8838 |
language | eng |
recordid | cdi_proquest_journals_2938501503 |
source | Springer Nature |
subjects | Agriculture Biosensors Charge transfer Chemistry Chemistry and Materials Science Chitosan Electrochemical impedance spectroscopy Electrochemistry Electrodes Industrial Chemistry/Chemical Engineering Infrared spectroscopy Membranes Nutrients Phosphorus Physical Chemistry Research Article Soils Spectrum analysis Stainless steels Substrates |
title | Aiming to a smart agriculture through the electrochemical impedance of a chitosan-molybdate membrane as a function of available phosphate species |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aiming%20to%20a%20smart%20agriculture%20through%20the%20electrochemical%20impedance%20of%20a%20chitosan-molybdate%20membrane%20as%20a%20function%20of%20available%20phosphate%20species&rft.jtitle=Journal%20of%20applied%20electrochemistry&rft.au=Beltr%C3%A1n-Ortega,%20M.%20A.&rft.date=2024-04-01&rft.volume=54&rft.issue=4&rft.spage=905&rft.epage=915&rft.pages=905-915&rft.issn=0021-891X&rft.eissn=1572-8838&rft_id=info:doi/10.1007/s10800-023-02002-x&rft_dat=%3Cproquest_cross%3E2938501503%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-947689616b120dd44c6bfc856f9e437898206a7c2d6a427400696804e4cfc53b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2938501503&rft_id=info:pmid/&rfr_iscdi=true |