Loading…

Simulation of Spectral Observations of an Eruptive Prominence

The paper presents the results of an analysis of observations of an eruptive prominence on the MFS and HSFA2 spectrographs of the Ondřejov Observatory (Astronomical Institute, Czech Republic) in the hydrogen, helium, and calcium lines. After spectral processing, the integral radiation fluxes in the...

Full description

Saved in:
Bibliographic Details
Published in:Geomagnetism and Aeronomy 2024-02, Vol.64 (1), p.19-23
Main Authors: Kupryakov, Yu. A., Bychkov, K. V., Belova, O. M., Gorshkov, A. B., Kotrč, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper presents the results of an analysis of observations of an eruptive prominence on the MFS and HSFA2 spectrographs of the Ondřejov Observatory (Astronomical Institute, Czech Republic) in the hydrogen, helium, and calcium lines. After spectral processing, the integral radiation fluxes in the lines were determined and the physical parameters of the plasma were calculated theoretically using a model in the absence of local thermodynamic equilibrium. Comparison of the observed and calculated values showed that the observed radiation fluxes in the lines can be explained in a model of stationary gas radiation taking into account the opacity in the spectral lines. To calculate the theoretical fluxes, in some cases, it was necessary to introduce radiation from several layers with different temperatures and heights. The calculated radiation fluxes agree with the observed ones to within 10%. As a result of the simulation, the main parameters of the plasma of the prominence were obtained: temperature, concentration, etc. The values of the radiation fluxes in the spectral lines are evidence of inhomogeneity of the emitting gas, and there may be regions next to each other with temperatures differing by an order of magnitude.
ISSN:0016-7932
1555-645X
0016-7940
DOI:10.1134/S0016793223600881