Loading…

Slope estimation in replicated linear functional relationship model via trimmed mean: A simulation study

A nonparametric method using the trimmed mean is proposed to estimate the slope parameter of the replicated linear functional relationship model (LFRM). This study considers the replicated LFRM when the error terms are not assumed to have a normal distribution. The maximum likelihood estimation meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Arif, Azuraini Mohd, Zubairi, Yong Zulina, Hussin, Abdul Ghapor
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2895
creator Arif, Azuraini Mohd
Zubairi, Yong Zulina
Hussin, Abdul Ghapor
description A nonparametric method using the trimmed mean is proposed to estimate the slope parameter of the replicated linear functional relationship model (LFRM). This study considers the replicated LFRM when the error terms are not assumed to have a normal distribution. The maximum likelihood estimation method requires the assumption of normality and may lead to errors when outliers are present in the data. The performance of the proposed method is compared with the maximum likelihood estimation method in terms of estimated bias and mean square error. Results simulation study highlighted that the proposed method provides a better estimate of the slope parameter in the presence of outliers as compared to the maximum likelihood estimation method.
doi_str_mv 10.1063/5.0192108
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2939406617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2939406617</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1688-5642bb1dd25d483e49a7b3eb42ec4bccf579cb20eea7a859f52f449b4a7293843</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTA174e7UqwKBRcquAuZTIamZB5OZoT-e9PH6i7Ody7nHADuMVpgJOgTXyCsCUbqAsww57iQAotLMENIs4Iw-nMNblLaIUS0lGoGtp-x6z30aQyNHUPXwtDCwfcxODv6CsbQejvAemrdQbUxi_EIpm3oYdNVPsK_YOE4hKbJhsbb9hkuYQrNdAJhGqdqfwuuahuTvzvfOfhev3yt3orNx-v7arkpeiyUKrhgpCxxVRFeMUU901aW1JeMeMdK52outSsJ8t5Kq7iuOakZ0yWzkmiqGJ2Dh9Pffuh-p9zL7LppyMGTyYBmSAgsM_V4opIL4zGl6XMBO-wNRuawpOHmvCT9B-HuZvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2939406617</pqid></control><display><type>conference_proceeding</type><title>Slope estimation in replicated linear functional relationship model via trimmed mean: A simulation study</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Arif, Azuraini Mohd ; Zubairi, Yong Zulina ; Hussin, Abdul Ghapor</creator><contributor>Hamid, Mohd Rashid Ab ; Satari, Siti Zanariah ; Nasir, Nadirah Mohd ; Yusof, Yuhani ; Jusoh, Rahimah</contributor><creatorcontrib>Arif, Azuraini Mohd ; Zubairi, Yong Zulina ; Hussin, Abdul Ghapor ; Hamid, Mohd Rashid Ab ; Satari, Siti Zanariah ; Nasir, Nadirah Mohd ; Yusof, Yuhani ; Jusoh, Rahimah</creatorcontrib><description>A nonparametric method using the trimmed mean is proposed to estimate the slope parameter of the replicated linear functional relationship model (LFRM). This study considers the replicated LFRM when the error terms are not assumed to have a normal distribution. The maximum likelihood estimation method requires the assumption of normality and may lead to errors when outliers are present in the data. The performance of the proposed method is compared with the maximum likelihood estimation method in terms of estimated bias and mean square error. Results simulation study highlighted that the proposed method provides a better estimate of the slope parameter in the presence of outliers as compared to the maximum likelihood estimation method.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0192108</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Error analysis ; Mathematical models ; Maximum likelihood estimation ; Normal distribution ; Outliers (statistics) ; Parameters</subject><ispartof>AIP conference proceedings, 2024, Vol.2895 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Hamid, Mohd Rashid Ab</contributor><contributor>Satari, Siti Zanariah</contributor><contributor>Nasir, Nadirah Mohd</contributor><contributor>Yusof, Yuhani</contributor><contributor>Jusoh, Rahimah</contributor><creatorcontrib>Arif, Azuraini Mohd</creatorcontrib><creatorcontrib>Zubairi, Yong Zulina</creatorcontrib><creatorcontrib>Hussin, Abdul Ghapor</creatorcontrib><title>Slope estimation in replicated linear functional relationship model via trimmed mean: A simulation study</title><title>AIP conference proceedings</title><description>A nonparametric method using the trimmed mean is proposed to estimate the slope parameter of the replicated linear functional relationship model (LFRM). This study considers the replicated LFRM when the error terms are not assumed to have a normal distribution. The maximum likelihood estimation method requires the assumption of normality and may lead to errors when outliers are present in the data. The performance of the proposed method is compared with the maximum likelihood estimation method in terms of estimated bias and mean square error. Results simulation study highlighted that the proposed method provides a better estimate of the slope parameter in the presence of outliers as compared to the maximum likelihood estimation method.</description><subject>Error analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>Normal distribution</subject><subject>Outliers (statistics)</subject><subject>Parameters</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTA174e7UqwKBRcquAuZTIamZB5OZoT-e9PH6i7Ody7nHADuMVpgJOgTXyCsCUbqAsww57iQAotLMENIs4Iw-nMNblLaIUS0lGoGtp-x6z30aQyNHUPXwtDCwfcxODv6CsbQejvAemrdQbUxi_EIpm3oYdNVPsK_YOE4hKbJhsbb9hkuYQrNdAJhGqdqfwuuahuTvzvfOfhev3yt3orNx-v7arkpeiyUKrhgpCxxVRFeMUU901aW1JeMeMdK52outSsJ8t5Kq7iuOakZ0yWzkmiqGJ2Dh9Pffuh-p9zL7LppyMGTyYBmSAgsM_V4opIL4zGl6XMBO-wNRuawpOHmvCT9B-HuZvw</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Arif, Azuraini Mohd</creator><creator>Zubairi, Yong Zulina</creator><creator>Hussin, Abdul Ghapor</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240307</creationdate><title>Slope estimation in replicated linear functional relationship model via trimmed mean: A simulation study</title><author>Arif, Azuraini Mohd ; Zubairi, Yong Zulina ; Hussin, Abdul Ghapor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1688-5642bb1dd25d483e49a7b3eb42ec4bccf579cb20eea7a859f52f449b4a7293843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Error analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>Normal distribution</topic><topic>Outliers (statistics)</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arif, Azuraini Mohd</creatorcontrib><creatorcontrib>Zubairi, Yong Zulina</creatorcontrib><creatorcontrib>Hussin, Abdul Ghapor</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arif, Azuraini Mohd</au><au>Zubairi, Yong Zulina</au><au>Hussin, Abdul Ghapor</au><au>Hamid, Mohd Rashid Ab</au><au>Satari, Siti Zanariah</au><au>Nasir, Nadirah Mohd</au><au>Yusof, Yuhani</au><au>Jusoh, Rahimah</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Slope estimation in replicated linear functional relationship model via trimmed mean: A simulation study</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-07</date><risdate>2024</risdate><volume>2895</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A nonparametric method using the trimmed mean is proposed to estimate the slope parameter of the replicated linear functional relationship model (LFRM). This study considers the replicated LFRM when the error terms are not assumed to have a normal distribution. The maximum likelihood estimation method requires the assumption of normality and may lead to errors when outliers are present in the data. The performance of the proposed method is compared with the maximum likelihood estimation method in terms of estimated bias and mean square error. Results simulation study highlighted that the proposed method provides a better estimate of the slope parameter in the presence of outliers as compared to the maximum likelihood estimation method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0192108</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2895 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2939406617
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Error analysis
Mathematical models
Maximum likelihood estimation
Normal distribution
Outliers (statistics)
Parameters
title Slope estimation in replicated linear functional relationship model via trimmed mean: A simulation study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Slope%20estimation%20in%20replicated%20linear%20functional%20relationship%20model%20via%20trimmed%20mean:%20A%20simulation%20study&rft.btitle=AIP%20conference%20proceedings&rft.au=Arif,%20Azuraini%20Mohd&rft.date=2024-03-07&rft.volume=2895&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0192108&rft_dat=%3Cproquest_scita%3E2939406617%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1688-5642bb1dd25d483e49a7b3eb42ec4bccf579cb20eea7a859f52f449b4a7293843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2939406617&rft_id=info:pmid/&rfr_iscdi=true