Loading…
LM-Net: a dynamic gesture recognition network with long-term aggregation and motion excitation
In recent years, there has been a growing interest in dynamic hand gestures as a natural means of human–computer interaction. However, existing methods for recognizing dynamic gestures have certain limitations, particularly in consistently capturing and focusing on the hand movement region across va...
Saved in:
Published in: | International journal of machine learning and cybernetics 2024-04, Vol.15 (4), p.1633-1645 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c298t-798bd063ad4359bcf06bc1999b6afca2f5c3beea44dc02edf0fd7df9030bdeea3 |
container_end_page | 1645 |
container_issue | 4 |
container_start_page | 1633 |
container_title | International journal of machine learning and cybernetics |
container_volume | 15 |
creator | Chang, Shaopeng Huang, Xueyu |
description | In recent years, there has been a growing interest in dynamic hand gestures as a natural means of human–computer interaction. However, existing methods for recognizing dynamic gestures have certain limitations, particularly in consistently capturing and focusing on the hand movement region across various motion patterns. This research paper presents LMNet, an innovative and efficacious network comprising the Long-term Aggregation Module and the Motion Excitation Module. The Motion Excitation Module exploits motion information extracted from neighboring frames to amplify motion-sensitive channels, while the Long-term Aggregation Module harnesses dynamic convolution to assimilate temporal information from diverse motion patterns. Rigorous experimentation conducted on the EgoGesture and Jester datasets demonstrates that LMNet surpasses the majority of prevailing approaches in terms of accuracy, while concurrently upholding an optimal computational cost. |
doi_str_mv | 10.1007/s13042-023-01987-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2942204562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2942204562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-798bd063ad4359bcf06bc1999b6afca2f5c3beea44dc02edf0fd7df9030bdeea3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGr_gKeA5-gk2a94k-IXVL0oeDJkk-y6tZvU7Jbaf2_cFb3pXGZ4ed4Z5kXomMIpBcjPOsohYQQYJ0BFkRO-hya0yApSQPG8_zPn9BDNum4JsTLgHNgEvSzuyL3tz7HCZudU22hc267fBIuD1b52Td94h53ttz684W3Tv-KVdzXpbWixqutgazUgyhnc-mG0H7rpB_UIHVRq1dnZd5-ip6vLx_kNWTxc384vFkQzUfQkF0VpIOPKJDwVpa4gKzUVQpSZqrRiVap5aa1KEqOBWVNBZXJTCeBQmqjzKToZ966Df9_EB-TSb4KLJyUTCWOQpBn7h6IppUykkWIjpYPvumAruQ5Nq8JOUpBfgcsxcBkDl0PgkkcTH01dhF1tw-_qP1yfHhyElA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2941511295</pqid></control><display><type>article</type><title>LM-Net: a dynamic gesture recognition network with long-term aggregation and motion excitation</title><source>Springer Nature</source><creator>Chang, Shaopeng ; Huang, Xueyu</creator><creatorcontrib>Chang, Shaopeng ; Huang, Xueyu</creatorcontrib><description>In recent years, there has been a growing interest in dynamic hand gestures as a natural means of human–computer interaction. However, existing methods for recognizing dynamic gestures have certain limitations, particularly in consistently capturing and focusing on the hand movement region across various motion patterns. This research paper presents LMNet, an innovative and efficacious network comprising the Long-term Aggregation Module and the Motion Excitation Module. The Motion Excitation Module exploits motion information extracted from neighboring frames to amplify motion-sensitive channels, while the Long-term Aggregation Module harnesses dynamic convolution to assimilate temporal information from diverse motion patterns. Rigorous experimentation conducted on the EgoGesture and Jester datasets demonstrates that LMNet surpasses the majority of prevailing approaches in terms of accuracy, while concurrently upholding an optimal computational cost.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-023-01987-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Deep learning ; Engineering ; Excitation ; Gesture recognition ; Harnesses ; Machine learning ; Mechatronics ; Modules ; Movement ; Neural networks ; Original Article ; Pattern Recognition ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2024-04, Vol.15 (4), p.1633-1645</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-798bd063ad4359bcf06bc1999b6afca2f5c3beea44dc02edf0fd7df9030bdeea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Shaopeng</creatorcontrib><creatorcontrib>Huang, Xueyu</creatorcontrib><title>LM-Net: a dynamic gesture recognition network with long-term aggregation and motion excitation</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>In recent years, there has been a growing interest in dynamic hand gestures as a natural means of human–computer interaction. However, existing methods for recognizing dynamic gestures have certain limitations, particularly in consistently capturing and focusing on the hand movement region across various motion patterns. This research paper presents LMNet, an innovative and efficacious network comprising the Long-term Aggregation Module and the Motion Excitation Module. The Motion Excitation Module exploits motion information extracted from neighboring frames to amplify motion-sensitive channels, while the Long-term Aggregation Module harnesses dynamic convolution to assimilate temporal information from diverse motion patterns. Rigorous experimentation conducted on the EgoGesture and Jester datasets demonstrates that LMNet surpasses the majority of prevailing approaches in terms of accuracy, while concurrently upholding an optimal computational cost.</description><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Excitation</subject><subject>Gesture recognition</subject><subject>Harnesses</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Modules</subject><subject>Movement</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGr_gKeA5-gk2a94k-IXVL0oeDJkk-y6tZvU7Jbaf2_cFb3pXGZ4ed4Z5kXomMIpBcjPOsohYQQYJ0BFkRO-hya0yApSQPG8_zPn9BDNum4JsTLgHNgEvSzuyL3tz7HCZudU22hc267fBIuD1b52Td94h53ttz684W3Tv-KVdzXpbWixqutgazUgyhnc-mG0H7rpB_UIHVRq1dnZd5-ip6vLx_kNWTxc384vFkQzUfQkF0VpIOPKJDwVpa4gKzUVQpSZqrRiVap5aa1KEqOBWVNBZXJTCeBQmqjzKToZ966Df9_EB-TSb4KLJyUTCWOQpBn7h6IppUykkWIjpYPvumAruQ5Nq8JOUpBfgcsxcBkDl0PgkkcTH01dhF1tw-_qP1yfHhyElA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Chang, Shaopeng</creator><creator>Huang, Xueyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240401</creationdate><title>LM-Net: a dynamic gesture recognition network with long-term aggregation and motion excitation</title><author>Chang, Shaopeng ; Huang, Xueyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-798bd063ad4359bcf06bc1999b6afca2f5c3beea44dc02edf0fd7df9030bdeea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Excitation</topic><topic>Gesture recognition</topic><topic>Harnesses</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Modules</topic><topic>Movement</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Shaopeng</creatorcontrib><creatorcontrib>Huang, Xueyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Shaopeng</au><au>Huang, Xueyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LM-Net: a dynamic gesture recognition network with long-term aggregation and motion excitation</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>15</volume><issue>4</issue><spage>1633</spage><epage>1645</epage><pages>1633-1645</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>In recent years, there has been a growing interest in dynamic hand gestures as a natural means of human–computer interaction. However, existing methods for recognizing dynamic gestures have certain limitations, particularly in consistently capturing and focusing on the hand movement region across various motion patterns. This research paper presents LMNet, an innovative and efficacious network comprising the Long-term Aggregation Module and the Motion Excitation Module. The Motion Excitation Module exploits motion information extracted from neighboring frames to amplify motion-sensitive channels, while the Long-term Aggregation Module harnesses dynamic convolution to assimilate temporal information from diverse motion patterns. Rigorous experimentation conducted on the EgoGesture and Jester datasets demonstrates that LMNet surpasses the majority of prevailing approaches in terms of accuracy, while concurrently upholding an optimal computational cost.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-023-01987-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2024-04, Vol.15 (4), p.1633-1645 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2942204562 |
source | Springer Nature |
subjects | Artificial Intelligence Complex Systems Computational Intelligence Control Deep learning Engineering Excitation Gesture recognition Harnesses Machine learning Mechatronics Modules Movement Neural networks Original Article Pattern Recognition Robotics Systems Biology |
title | LM-Net: a dynamic gesture recognition network with long-term aggregation and motion excitation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LM-Net:%20a%20dynamic%20gesture%20recognition%20network%20with%20long-term%20aggregation%20and%20motion%20excitation&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Chang,%20Shaopeng&rft.date=2024-04-01&rft.volume=15&rft.issue=4&rft.spage=1633&rft.epage=1645&rft.pages=1633-1645&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-023-01987-3&rft_dat=%3Cproquest_cross%3E2942204562%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-798bd063ad4359bcf06bc1999b6afca2f5c3beea44dc02edf0fd7df9030bdeea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2941511295&rft_id=info:pmid/&rfr_iscdi=true |