Loading…
Data Science: Key Directions, Problems, and Perspectives
— This article outlines the boundaries of data science in relation to artificial intelligence. It also describes the multidimensional bilateral relationships between data science and other related sciences and provides a brief introduction to the methodology of data science and its key research dire...
Saved in:
Published in: | Scientific and technical information processing 2023-12, Vol.50 (6), p.543-556 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c268t-1fee2b125812f02232a7729c610184701076106d138c969dd68abda89f39e9383 |
container_end_page | 556 |
container_issue | 6 |
container_start_page | 543 |
container_title | Scientific and technical information processing |
container_volume | 50 |
creator | Gorodetsky, V. I. |
description | —
This article outlines the boundaries of data science in relation to artificial intelligence. It also describes the multidimensional bilateral relationships between data science and other related sciences and provides a brief introduction to the methodology of data science and its key research directions. Finally, the article also discusses some challenging problems that data science is expected to address. |
doi_str_mv | 10.3103/S0147688223060059 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2942205819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2942205819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-1fee2b125812f02232a7729c610184701076106d138c969dd68abda89f39e9383</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRMFY_gLeAV6M7s-lm15u09Q8WLFTPYbOZSEqbxN1U6Ld3QwQP4mkevN97Mwxjl8BvBHBxu-aQZlIpRMEl51N9xCLQIk0UgDpm0WAng3_KzrzfBEJiqiOm5qY38drW1Fi6i1_oEM9rR7av28ZfxyvXFlvaBWWaMl6R893gfZE_ZyeV2Xq6-JkT9v6weJs9JcvXx-fZ_TKxKFWfQEWEBeBUAVY8XIcmy1BbCRxUmnHgWZCyBKGslrospTJFaZSuhCYtlJiwq7G3c-3nnnyfb9q9a8LKHHWKyEOzDhSMlHWt946qvHP1zrhDDjwfHpT_eVDI4JjxgW0-yP02_x_6BpuqY_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2942205819</pqid></control><display><type>article</type><title>Data Science: Key Directions, Problems, and Perspectives</title><source>Springer Nature</source><creator>Gorodetsky, V. I.</creator><creatorcontrib>Gorodetsky, V. I.</creatorcontrib><description>—
This article outlines the boundaries of data science in relation to artificial intelligence. It also describes the multidimensional bilateral relationships between data science and other related sciences and provides a brief introduction to the methodology of data science and its key research directions. Finally, the article also discusses some challenging problems that data science is expected to address.</description><identifier>ISSN: 0147-6882</identifier><identifier>EISSN: 1934-8118</identifier><identifier>DOI: 10.3103/S0147688223060059</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial intelligence ; Computer Science ; Computer Systems Organization and Communication Networks ; Data science</subject><ispartof>Scientific and technical information processing, 2023-12, Vol.50 (6), p.543-556</ispartof><rights>Allerton Press, Inc. 2023. ISSN 0147-6882, Scientific and Technical Information Processing, 2023, Vol. 50, No. 6, pp. 543–556. © Allerton Press, Inc., 2023. Russian Text © The Author(s), 2022, published in Iskusstvennyi Intellekt i Prinyatie Reshenii, 2022, No. 3, pp. 3–20.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-1fee2b125812f02232a7729c610184701076106d138c969dd68abda89f39e9383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gorodetsky, V. I.</creatorcontrib><title>Data Science: Key Directions, Problems, and Perspectives</title><title>Scientific and technical information processing</title><addtitle>Sci. Tech. Inf. Proc</addtitle><description>—
This article outlines the boundaries of data science in relation to artificial intelligence. It also describes the multidimensional bilateral relationships between data science and other related sciences and provides a brief introduction to the methodology of data science and its key research directions. Finally, the article also discusses some challenging problems that data science is expected to address.</description><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data science</subject><issn>0147-6882</issn><issn>1934-8118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRMFY_gLeAV6M7s-lm15u09Q8WLFTPYbOZSEqbxN1U6Ld3QwQP4mkevN97Mwxjl8BvBHBxu-aQZlIpRMEl51N9xCLQIk0UgDpm0WAng3_KzrzfBEJiqiOm5qY38drW1Fi6i1_oEM9rR7av28ZfxyvXFlvaBWWaMl6R893gfZE_ZyeV2Xq6-JkT9v6weJs9JcvXx-fZ_TKxKFWfQEWEBeBUAVY8XIcmy1BbCRxUmnHgWZCyBKGslrospTJFaZSuhCYtlJiwq7G3c-3nnnyfb9q9a8LKHHWKyEOzDhSMlHWt946qvHP1zrhDDjwfHpT_eVDI4JjxgW0-yP02_x_6BpuqY_0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Gorodetsky, V. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231201</creationdate><title>Data Science: Key Directions, Problems, and Perspectives</title><author>Gorodetsky, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-1fee2b125812f02232a7729c610184701076106d138c969dd68abda89f39e9383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorodetsky, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific and technical information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorodetsky, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Science: Key Directions, Problems, and Perspectives</atitle><jtitle>Scientific and technical information processing</jtitle><stitle>Sci. Tech. Inf. Proc</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>50</volume><issue>6</issue><spage>543</spage><epage>556</epage><pages>543-556</pages><issn>0147-6882</issn><eissn>1934-8118</eissn><abstract>—
This article outlines the boundaries of data science in relation to artificial intelligence. It also describes the multidimensional bilateral relationships between data science and other related sciences and provides a brief introduction to the methodology of data science and its key research directions. Finally, the article also discusses some challenging problems that data science is expected to address.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0147688223060059</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0147-6882 |
ispartof | Scientific and technical information processing, 2023-12, Vol.50 (6), p.543-556 |
issn | 0147-6882 1934-8118 |
language | eng |
recordid | cdi_proquest_journals_2942205819 |
source | Springer Nature |
subjects | Artificial intelligence Computer Science Computer Systems Organization and Communication Networks Data science |
title | Data Science: Key Directions, Problems, and Perspectives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Science:%20Key%20Directions,%20Problems,%20and%20Perspectives&rft.jtitle=Scientific%20and%20technical%20information%20processing&rft.au=Gorodetsky,%20V.%20I.&rft.date=2023-12-01&rft.volume=50&rft.issue=6&rft.spage=543&rft.epage=556&rft.pages=543-556&rft.issn=0147-6882&rft.eissn=1934-8118&rft_id=info:doi/10.3103/S0147688223060059&rft_dat=%3Cproquest_cross%3E2942205819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-1fee2b125812f02232a7729c610184701076106d138c969dd68abda89f39e9383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2942205819&rft_id=info:pmid/&rfr_iscdi=true |