Loading…
On the diagonal of Riesz operators on Banach lattices
This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motiva...
Saved in:
Published in: | Quaestiones mathematicae 2024-03, Vol.47 (sup1), p.137-151 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003 |
container_end_page | 151 |
container_issue | sup1 |
container_start_page | 137 |
container_title | Quaestiones mathematicae |
container_volume | 47 |
creator | Drnovšek, R. Kandić, M. |
description | This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice E. We prove that the class
of regular operators for which the diagonal coincides with the atomic diagonal is always a band in
, which contains the band of abstract integral operators. If E is also a Banach lattice, then
contains positive Riesz and positive AM-compact operators. |
doi_str_mv | 10.2989/16073606.2023.2287829 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2954131310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954131310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKuPIAQ8b81mNsnmpharQqEgCt7CdDexW7abmqRIfXp3ab3KHGYO3_8zfIRc52zCdalvc8kUSCYnnHGYcF6qkusTMsoVV5kG-Djt757JBuicXMS4ZgwEy_WIiEVH08rSusFP32FLvaOvjY0_1G9twORDpL6jD9hhtaItptRUNl6SM4dttFfHPSbvs8e36XM2Xzy9TO_nWQUAKeMil2WttAQnLMhCsqVQDBmUTEnN1ZKDK7TAJVSqsK6si0JZjgpLKfr_GIzJzaF3G_zXzsZk1n4X-jej4VoUOfQzUOJAVcHHGKwz29BsMOxNzsxgyPwZMoMhczTU5-4OuaZzPmzw24e2Ngn3rQ8uYFc10cD_Fb8M_moL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954131310</pqid></control><display><type>article</type><title>On the diagonal of Riesz operators on Banach lattices</title><source>Taylor and Francis Science and Technology Collection</source><creator>Drnovšek, R. ; Kandić, M.</creator><creatorcontrib>Drnovšek, R. ; Kandić, M.</creatorcontrib><description>This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice E. We prove that the class
of regular operators for which the diagonal coincides with the atomic diagonal is always a band in
, which contains the band of abstract integral operators. If E is also a Banach lattice, then
contains positive Riesz and positive AM-compact operators.</description><identifier>ISSN: 1607-3606</identifier><identifier>EISSN: 1727-933X</identifier><identifier>DOI: 10.2989/16073606.2023.2287829</identifier><language>eng</language><publisher>Grahamstown: Taylor & Francis</publisher><subject>Banach lattices ; Banach spaces ; diagonal of an operator ; Lattices (mathematics) ; Linear operators ; Operators (mathematics) ; Riesz operators ; Vector lattices</subject><ispartof>Quaestiones mathematicae, 2024-03, Vol.47 (sup1), p.137-151</ispartof><rights>2024 The Author(s). Co Published by NISC Pty (Ltd) and Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 The Author(s). Co Published by NISC Pty (Ltd) and Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Drnovšek, R.</creatorcontrib><creatorcontrib>Kandić, M.</creatorcontrib><title>On the diagonal of Riesz operators on Banach lattices</title><title>Quaestiones mathematicae</title><description>This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice E. We prove that the class
of regular operators for which the diagonal coincides with the atomic diagonal is always a band in
, which contains the band of abstract integral operators. If E is also a Banach lattice, then
contains positive Riesz and positive AM-compact operators.</description><subject>Banach lattices</subject><subject>Banach spaces</subject><subject>diagonal of an operator</subject><subject>Lattices (mathematics)</subject><subject>Linear operators</subject><subject>Operators (mathematics)</subject><subject>Riesz operators</subject><subject>Vector lattices</subject><issn>1607-3606</issn><issn>1727-933X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kMFKAzEQhoMoWKuPIAQ8b81mNsnmpharQqEgCt7CdDexW7abmqRIfXp3ab3KHGYO3_8zfIRc52zCdalvc8kUSCYnnHGYcF6qkusTMsoVV5kG-Djt757JBuicXMS4ZgwEy_WIiEVH08rSusFP32FLvaOvjY0_1G9twORDpL6jD9hhtaItptRUNl6SM4dttFfHPSbvs8e36XM2Xzy9TO_nWQUAKeMil2WttAQnLMhCsqVQDBmUTEnN1ZKDK7TAJVSqsK6si0JZjgpLKfr_GIzJzaF3G_zXzsZk1n4X-jej4VoUOfQzUOJAVcHHGKwz29BsMOxNzsxgyPwZMoMhczTU5-4OuaZzPmzw24e2Ngn3rQ8uYFc10cD_Fb8M_moL</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>Drnovšek, R.</creator><creator>Kandić, M.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240329</creationdate><title>On the diagonal of Riesz operators on Banach lattices</title><author>Drnovšek, R. ; Kandić, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Banach lattices</topic><topic>Banach spaces</topic><topic>diagonal of an operator</topic><topic>Lattices (mathematics)</topic><topic>Linear operators</topic><topic>Operators (mathematics)</topic><topic>Riesz operators</topic><topic>Vector lattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drnovšek, R.</creatorcontrib><creatorcontrib>Kandić, M.</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>CrossRef</collection><jtitle>Quaestiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drnovšek, R.</au><au>Kandić, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the diagonal of Riesz operators on Banach lattices</atitle><jtitle>Quaestiones mathematicae</jtitle><date>2024-03-29</date><risdate>2024</risdate><volume>47</volume><issue>sup1</issue><spage>137</spage><epage>151</epage><pages>137-151</pages><issn>1607-3606</issn><eissn>1727-933X</eissn><abstract>This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice E. We prove that the class
of regular operators for which the diagonal coincides with the atomic diagonal is always a band in
, which contains the band of abstract integral operators. If E is also a Banach lattice, then
contains positive Riesz and positive AM-compact operators.</abstract><cop>Grahamstown</cop><pub>Taylor & Francis</pub><doi>10.2989/16073606.2023.2287829</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1607-3606 |
ispartof | Quaestiones mathematicae, 2024-03, Vol.47 (sup1), p.137-151 |
issn | 1607-3606 1727-933X |
language | eng |
recordid | cdi_proquest_journals_2954131310 |
source | Taylor and Francis Science and Technology Collection |
subjects | Banach lattices Banach spaces diagonal of an operator Lattices (mathematics) Linear operators Operators (mathematics) Riesz operators Vector lattices |
title | On the diagonal of Riesz operators on Banach lattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20diagonal%20of%20Riesz%20operators%20on%20Banach%20lattices&rft.jtitle=Quaestiones%20mathematicae&rft.au=Drnov%C5%A1ek,%20R.&rft.date=2024-03-29&rft.volume=47&rft.issue=sup1&rft.spage=137&rft.epage=151&rft.pages=137-151&rft.issn=1607-3606&rft.eissn=1727-933X&rft_id=info:doi/10.2989/16073606.2023.2287829&rft_dat=%3Cproquest_cross%3E2954131310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954131310&rft_id=info:pmid/&rfr_iscdi=true |