Loading…

On the diagonal of Riesz operators on Banach lattices

This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motiva...

Full description

Saved in:
Bibliographic Details
Published in:Quaestiones mathematicae 2024-03, Vol.47 (sup1), p.137-151
Main Authors: Drnovšek, R., Kandić, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003
container_end_page 151
container_issue sup1
container_start_page 137
container_title Quaestiones mathematicae
container_volume 47
creator Drnovšek, R.
Kandić, M.
description This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice E. We prove that the class of regular operators for which the diagonal coincides with the atomic diagonal is always a band in , which contains the band of abstract integral operators. If E is also a Banach lattice, then contains positive Riesz and positive AM-compact operators.
doi_str_mv 10.2989/16073606.2023.2287829
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2954131310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954131310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKuPIAQ8b81mNsnmpharQqEgCt7CdDexW7abmqRIfXp3ab3KHGYO3_8zfIRc52zCdalvc8kUSCYnnHGYcF6qkusTMsoVV5kG-Djt757JBuicXMS4ZgwEy_WIiEVH08rSusFP32FLvaOvjY0_1G9twORDpL6jD9hhtaItptRUNl6SM4dttFfHPSbvs8e36XM2Xzy9TO_nWQUAKeMil2WttAQnLMhCsqVQDBmUTEnN1ZKDK7TAJVSqsK6si0JZjgpLKfr_GIzJzaF3G_zXzsZk1n4X-jej4VoUOfQzUOJAVcHHGKwz29BsMOxNzsxgyPwZMoMhczTU5-4OuaZzPmzw24e2Ngn3rQ8uYFc10cD_Fb8M_moL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954131310</pqid></control><display><type>article</type><title>On the diagonal of Riesz operators on Banach lattices</title><source>Taylor and Francis Science and Technology Collection</source><creator>Drnovšek, R. ; Kandić, M.</creator><creatorcontrib>Drnovšek, R. ; Kandić, M.</creatorcontrib><description>This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice E. We prove that the class of regular operators for which the diagonal coincides with the atomic diagonal is always a band in , which contains the band of abstract integral operators. If E is also a Banach lattice, then contains positive Riesz and positive AM-compact operators.</description><identifier>ISSN: 1607-3606</identifier><identifier>EISSN: 1727-933X</identifier><identifier>DOI: 10.2989/16073606.2023.2287829</identifier><language>eng</language><publisher>Grahamstown: Taylor &amp; Francis</publisher><subject>Banach lattices ; Banach spaces ; diagonal of an operator ; Lattices (mathematics) ; Linear operators ; Operators (mathematics) ; Riesz operators ; Vector lattices</subject><ispartof>Quaestiones mathematicae, 2024-03, Vol.47 (sup1), p.137-151</ispartof><rights>2024 The Author(s). Co Published by NISC Pty (Ltd) and Informa UK Limited, trading as Taylor &amp; Francis Group. 2024</rights><rights>2024 The Author(s). Co Published by NISC Pty (Ltd) and Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Drnovšek, R.</creatorcontrib><creatorcontrib>Kandić, M.</creatorcontrib><title>On the diagonal of Riesz operators on Banach lattices</title><title>Quaestiones mathematicae</title><description>This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice E. We prove that the class of regular operators for which the diagonal coincides with the atomic diagonal is always a band in , which contains the band of abstract integral operators. If E is also a Banach lattice, then contains positive Riesz and positive AM-compact operators.</description><subject>Banach lattices</subject><subject>Banach spaces</subject><subject>diagonal of an operator</subject><subject>Lattices (mathematics)</subject><subject>Linear operators</subject><subject>Operators (mathematics)</subject><subject>Riesz operators</subject><subject>Vector lattices</subject><issn>1607-3606</issn><issn>1727-933X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kMFKAzEQhoMoWKuPIAQ8b81mNsnmpharQqEgCt7CdDexW7abmqRIfXp3ab3KHGYO3_8zfIRc52zCdalvc8kUSCYnnHGYcF6qkusTMsoVV5kG-Djt757JBuicXMS4ZgwEy_WIiEVH08rSusFP32FLvaOvjY0_1G9twORDpL6jD9hhtaItptRUNl6SM4dttFfHPSbvs8e36XM2Xzy9TO_nWQUAKeMil2WttAQnLMhCsqVQDBmUTEnN1ZKDK7TAJVSqsK6si0JZjgpLKfr_GIzJzaF3G_zXzsZk1n4X-jej4VoUOfQzUOJAVcHHGKwz29BsMOxNzsxgyPwZMoMhczTU5-4OuaZzPmzw24e2Ngn3rQ8uYFc10cD_Fb8M_moL</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>Drnovšek, R.</creator><creator>Kandić, M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240329</creationdate><title>On the diagonal of Riesz operators on Banach lattices</title><author>Drnovšek, R. ; Kandić, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Banach lattices</topic><topic>Banach spaces</topic><topic>diagonal of an operator</topic><topic>Lattices (mathematics)</topic><topic>Linear operators</topic><topic>Operators (mathematics)</topic><topic>Riesz operators</topic><topic>Vector lattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drnovšek, R.</creatorcontrib><creatorcontrib>Kandić, M.</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>CrossRef</collection><jtitle>Quaestiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drnovšek, R.</au><au>Kandić, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the diagonal of Riesz operators on Banach lattices</atitle><jtitle>Quaestiones mathematicae</jtitle><date>2024-03-29</date><risdate>2024</risdate><volume>47</volume><issue>sup1</issue><spage>137</spage><epage>151</epage><pages>137-151</pages><issn>1607-3606</issn><eissn>1727-933X</eissn><abstract>This paper extends the well-known Ringrose theory for compact operators to polynomially Riesz operators on Banach spaces. The particular case of an ideal-triangularizable Riesz operator on an order continuous Banach lattice yields that the spectrum of such operator lies on its diagonal, which motivates the systematic study of an abstract diagonal of a regular operator on an order complete vector lattice E. We prove that the class of regular operators for which the diagonal coincides with the atomic diagonal is always a band in , which contains the band of abstract integral operators. If E is also a Banach lattice, then contains positive Riesz and positive AM-compact operators.</abstract><cop>Grahamstown</cop><pub>Taylor &amp; Francis</pub><doi>10.2989/16073606.2023.2287829</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1607-3606
ispartof Quaestiones mathematicae, 2024-03, Vol.47 (sup1), p.137-151
issn 1607-3606
1727-933X
language eng
recordid cdi_proquest_journals_2954131310
source Taylor and Francis Science and Technology Collection
subjects Banach lattices
Banach spaces
diagonal of an operator
Lattices (mathematics)
Linear operators
Operators (mathematics)
Riesz operators
Vector lattices
title On the diagonal of Riesz operators on Banach lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20diagonal%20of%20Riesz%20operators%20on%20Banach%20lattices&rft.jtitle=Quaestiones%20mathematicae&rft.au=Drnov%C5%A1ek,%20R.&rft.date=2024-03-29&rft.volume=47&rft.issue=sup1&rft.spage=137&rft.epage=151&rft.pages=137-151&rft.issn=1607-3606&rft.eissn=1727-933X&rft_id=info:doi/10.2989/16073606.2023.2287829&rft_dat=%3Cproquest_cross%3E2954131310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-25168d7963f5e36460b570a038076927b23f495ab3c74ef8d447e2a7a86535003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954131310&rft_id=info:pmid/&rfr_iscdi=true