Loading…

Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight

In this research work, we consider the second-order viscoelastic equation with a weak internal damping, a time-varying delay term and nonlinear weights u tt ( t ) + A u ( t ) - ∫ 0 t g ( t - s ) A u ( s ) d s + μ 1 ( t ) u t ( t ) + μ 2 ( t ) u t ( t - τ ( t ) ) = 0 ∀ t > 0 , together with suitab...

Full description

Saved in:
Bibliographic Details
Published in:Ricerche di matematica 2024-02, Vol.73 (1), p.433-469
Main Authors: Makheloufi, Hocine, Bahlil, Mounir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-91a24e838cdc26ba300c91f0e30d11a4e0c4042d3f1816e8dadc9c5bceb615423
cites cdi_FETCH-LOGICAL-c319t-91a24e838cdc26ba300c91f0e30d11a4e0c4042d3f1816e8dadc9c5bceb615423
container_end_page 469
container_issue 1
container_start_page 433
container_title Ricerche di matematica
container_volume 73
creator Makheloufi, Hocine
Bahlil, Mounir
description In this research work, we consider the second-order viscoelastic equation with a weak internal damping, a time-varying delay term and nonlinear weights u tt ( t ) + A u ( t ) - ∫ 0 t g ( t - s ) A u ( s ) d s + μ 1 ( t ) u t ( t ) + μ 2 ( t ) u t ( t - τ ( t ) ) = 0 ∀ t > 0 , together with suitable initial conditions. We first prove the existence of a unique global weak solution by means of the classical Faedo–Galerkin method. Then, by assuming the general condition: g ′ ( t ) ≤ - ξ ( t ) H ( g ( t ) ) , ∀ t ≥ 0 , where H is a positive increasing and convex function and ξ is a positive function which is not necessarily monotone, we establish optimal explicit and general stability estimates which rely on the well-known multipliers method and some properties of convex functions. This study generalizes and improves many earlier ones in the existing literature.
doi_str_mv 10.1007/s11587-021-00617-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2954219874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954219874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-91a24e838cdc26ba300c91f0e30d11a4e0c4042d3f1816e8dadc9c5bceb615423</originalsourceid><addsrcrecordid>eNp9kEFuFDEQRa0IpAyBC7CyxNpQ1XZPdy-jCAJSJDbJ2nK7qxNHjj1xeRjNAbg3TgaJHata_PdfSV-IjwifEWD4woj9OCjoUAFscVCHM7HBsRuUNhO-ERsA3ase9Hgu3jE_ApihB7MRv69jnl2UB4pR7TLTkohZurRIrm4OMdSjLMT7WFmuubREuplrcb7KX4F9pui4Bi_pee9qyEkeQn2QTqaclM-pWVKVS6OOslJ5elW3LIZErrS_4f6hvhdvVxeZPvy9F-Lu29fbq-_q5uf1j6vLG-U1TlVN6DpDox794rvt7DSAn3AF0rAgOkPgDZhu0SuOuKVxcYuffD97mrfYm05fiE8n767k5z1xtY95X1J7abupATiNg2lUd6J8ycyFVrsr4cmVo0WwL3Pb09y2zW1f57aHVtKnEjc43VP5p_5P6w_JsoaG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954219874</pqid></control><display><type>article</type><title>Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight</title><source>Springer Link</source><creator>Makheloufi, Hocine ; Bahlil, Mounir</creator><creatorcontrib>Makheloufi, Hocine ; Bahlil, Mounir</creatorcontrib><description>In this research work, we consider the second-order viscoelastic equation with a weak internal damping, a time-varying delay term and nonlinear weights u tt ( t ) + A u ( t ) - ∫ 0 t g ( t - s ) A u ( s ) d s + μ 1 ( t ) u t ( t ) + μ 2 ( t ) u t ( t - τ ( t ) ) = 0 ∀ t &gt; 0 , together with suitable initial conditions. We first prove the existence of a unique global weak solution by means of the classical Faedo–Galerkin method. Then, by assuming the general condition: g ′ ( t ) ≤ - ξ ( t ) H ( g ( t ) ) , ∀ t ≥ 0 , where H is a positive increasing and convex function and ξ is a positive function which is not necessarily monotone, we establish optimal explicit and general stability estimates which rely on the well-known multipliers method and some properties of convex functions. This study generalizes and improves many earlier ones in the existing literature.</description><identifier>ISSN: 0035-5038</identifier><identifier>EISSN: 1827-3491</identifier><identifier>DOI: 10.1007/s11587-021-00617-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Damping ; Galerkin method ; Geometry ; Initial conditions ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Probability Theory and Stochastic Processes ; Stability ; Viscoelasticity</subject><ispartof>Ricerche di matematica, 2024-02, Vol.73 (1), p.433-469</ispartof><rights>Università degli Studi di Napoli "Federico II" 2021</rights><rights>Università degli Studi di Napoli "Federico II" 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-91a24e838cdc26ba300c91f0e30d11a4e0c4042d3f1816e8dadc9c5bceb615423</citedby><cites>FETCH-LOGICAL-c319t-91a24e838cdc26ba300c91f0e30d11a4e0c4042d3f1816e8dadc9c5bceb615423</cites><orcidid>0000-0001-7386-7623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Makheloufi, Hocine</creatorcontrib><creatorcontrib>Bahlil, Mounir</creatorcontrib><title>Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight</title><title>Ricerche di matematica</title><addtitle>Ricerche mat</addtitle><description>In this research work, we consider the second-order viscoelastic equation with a weak internal damping, a time-varying delay term and nonlinear weights u tt ( t ) + A u ( t ) - ∫ 0 t g ( t - s ) A u ( s ) d s + μ 1 ( t ) u t ( t ) + μ 2 ( t ) u t ( t - τ ( t ) ) = 0 ∀ t &gt; 0 , together with suitable initial conditions. We first prove the existence of a unique global weak solution by means of the classical Faedo–Galerkin method. Then, by assuming the general condition: g ′ ( t ) ≤ - ξ ( t ) H ( g ( t ) ) , ∀ t ≥ 0 , where H is a positive increasing and convex function and ξ is a positive function which is not necessarily monotone, we establish optimal explicit and general stability estimates which rely on the well-known multipliers method and some properties of convex functions. This study generalizes and improves many earlier ones in the existing literature.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Damping</subject><subject>Galerkin method</subject><subject>Geometry</subject><subject>Initial conditions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Stability</subject><subject>Viscoelasticity</subject><issn>0035-5038</issn><issn>1827-3491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFuFDEQRa0IpAyBC7CyxNpQ1XZPdy-jCAJSJDbJ2nK7qxNHjj1xeRjNAbg3TgaJHata_PdfSV-IjwifEWD4woj9OCjoUAFscVCHM7HBsRuUNhO-ERsA3ase9Hgu3jE_ApihB7MRv69jnl2UB4pR7TLTkohZurRIrm4OMdSjLMT7WFmuubREuplrcb7KX4F9pui4Bi_pee9qyEkeQn2QTqaclM-pWVKVS6OOslJ5elW3LIZErrS_4f6hvhdvVxeZPvy9F-Lu29fbq-_q5uf1j6vLG-U1TlVN6DpDox794rvt7DSAn3AF0rAgOkPgDZhu0SuOuKVxcYuffD97mrfYm05fiE8n767k5z1xtY95X1J7abupATiNg2lUd6J8ycyFVrsr4cmVo0WwL3Pb09y2zW1f57aHVtKnEjc43VP5p_5P6w_JsoaG</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Makheloufi, Hocine</creator><creator>Bahlil, Mounir</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7386-7623</orcidid></search><sort><creationdate>20240201</creationdate><title>Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight</title><author>Makheloufi, Hocine ; Bahlil, Mounir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-91a24e838cdc26ba300c91f0e30d11a4e0c4042d3f1816e8dadc9c5bceb615423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Damping</topic><topic>Galerkin method</topic><topic>Geometry</topic><topic>Initial conditions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Stability</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makheloufi, Hocine</creatorcontrib><creatorcontrib>Bahlil, Mounir</creatorcontrib><collection>CrossRef</collection><jtitle>Ricerche di matematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makheloufi, Hocine</au><au>Bahlil, Mounir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight</atitle><jtitle>Ricerche di matematica</jtitle><stitle>Ricerche mat</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>73</volume><issue>1</issue><spage>433</spage><epage>469</epage><pages>433-469</pages><issn>0035-5038</issn><eissn>1827-3491</eissn><abstract>In this research work, we consider the second-order viscoelastic equation with a weak internal damping, a time-varying delay term and nonlinear weights u tt ( t ) + A u ( t ) - ∫ 0 t g ( t - s ) A u ( s ) d s + μ 1 ( t ) u t ( t ) + μ 2 ( t ) u t ( t - τ ( t ) ) = 0 ∀ t &gt; 0 , together with suitable initial conditions. We first prove the existence of a unique global weak solution by means of the classical Faedo–Galerkin method. Then, by assuming the general condition: g ′ ( t ) ≤ - ξ ( t ) H ( g ( t ) ) , ∀ t ≥ 0 , where H is a positive increasing and convex function and ξ is a positive function which is not necessarily monotone, we establish optimal explicit and general stability estimates which rely on the well-known multipliers method and some properties of convex functions. This study generalizes and improves many earlier ones in the existing literature.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11587-021-00617-w</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-7386-7623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0035-5038
ispartof Ricerche di matematica, 2024-02, Vol.73 (1), p.433-469
issn 0035-5038
1827-3491
language eng
recordid cdi_proquest_journals_2954219874
source Springer Link
subjects Algebra
Analysis
Damping
Galerkin method
Geometry
Initial conditions
Mathematics
Mathematics and Statistics
Numerical Analysis
Probability Theory and Stochastic Processes
Stability
Viscoelasticity
title Global well-posedness and stability results for an abstract viscoelastic equation with a non-constant delay term and nonlinear weight
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20well-posedness%20and%20stability%20results%20for%20an%20abstract%20viscoelastic%20equation%20with%20a%20non-constant%20delay%20term%20and%20nonlinear%20weight&rft.jtitle=Ricerche%20di%20matematica&rft.au=Makheloufi,%20Hocine&rft.date=2024-02-01&rft.volume=73&rft.issue=1&rft.spage=433&rft.epage=469&rft.pages=433-469&rft.issn=0035-5038&rft.eissn=1827-3491&rft_id=info:doi/10.1007/s11587-021-00617-w&rft_dat=%3Cproquest_cross%3E2954219874%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-91a24e838cdc26ba300c91f0e30d11a4e0c4042d3f1816e8dadc9c5bceb615423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954219874&rft_id=info:pmid/&rfr_iscdi=true