Loading…

Experimental research on optimum freezing temperature of sandy gravels in artificial ground freezing

The control of freezing temperatures throughout the artificial ground freezing (AGF) process is always difficult. An overly high temperature of the circulating refrigerant may lead to insufficient frozen soil strength, while an overly low temperature may cause unnecessary energy waste, and even exce...

Full description

Saved in:
Bibliographic Details
Published in:Environmental earth sciences 2024-03, Vol.83 (6), p.176, Article 176
Main Authors: Wu, Wang, Yan, Qixiang, Qiu, Yunhui, Wang, Erli, Zhang, Chuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The control of freezing temperatures throughout the artificial ground freezing (AGF) process is always difficult. An overly high temperature of the circulating refrigerant may lead to insufficient frozen soil strength, while an overly low temperature may cause unnecessary energy waste, and even excessive pore ice may damage the soil structure and reduce the frozen soil strength. What's more, overly freezing may damage buildings on the surface. Therefore, it is of great significance to study the optimum freezing temperature (OFT), which is very important for better and more energy-efficient employment of the AGF method. In this paper, we use uniaxial compression and direct shear tests to obtain dynamic mechanical parameters in the soil freezing process. After the analysis of varying mechanical parameters by the entropy weight TOPSIS principal component analysis method, the results show that the interval range of OFT for saturated and unsaturated sandy gravel is [− 10 °C, − 15 °C] and [− 15 °C, − 20 °C], respectively. The findings indicate that, in the AGF method, a lower temperature is not always preferable. According to the results, constructive measures to optimize the temperature field distribution in the AGF method are proposed. The research results will contribute to the assessment of the safety and efficiency of AGF projects.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-023-11411-2