Loading…

Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene‐Hopene Cyclases

The interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2024-03, Vol.136 (12), p.n/a
Main Authors: Ludwig, Julian, Curado‐Carballada, Christian, Hammer, Stephan C., Schneider, Andreas, Diether, Svenja, Kress, Nico, Ruiz‐Barragán, Sergi, Osuna, Sílvia, Hauer, Bernhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1573-9aa77b44cb066295df85f6319aadf797b91832ba1435ad921ee10642329803293
container_end_page n/a
container_issue 12
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Ludwig, Julian
Curado‐Carballada, Christian
Hammer, Stephan C.
Schneider, Andreas
Diether, Svenja
Kress, Nico
Ruiz‐Barragán, Sergi
Osuna, Sílvia
Hauer, Bernhard
description The interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast, natural monoterpene cyclases exhibit high control over the carbocation rearrangement reactions but are reliant on phosphorylated substrates. In this study, we present engineered squalene‐hopene cyclases from Alicyclobacillus acidocaldarius (AacSHC) that catalyze the challenging isomerization of monoterpenes with unprecedented precision. Starting from a promiscuous isomerization of (+)‐β‐pinene, we first demonstrate noticeable shifts in the product distribution solely by introducing single point mutations. Furthermore, we showcase the tuneable cation steering by enhancing (+)‐borneol selectivity from 1 % to >90 % (>99 % de) aided by iterative saturation mutagenesis. Our combined experimental and computational data suggest that the reorganization of key aromatic residues leads to the restructuring of the water network that facilitates the selective termination of the secondary isobornyl cation. This work expands our mechanistic understanding of carbocation rearrangements and sets the stage for target‐oriented skeletal reorganization of broadly abundant terpenes. Carbocation‐based rearrangements are vital for terpene versatility. AacSHC triterpene cyclase from Alicyclobacillus acidocaldarius acted as a promiscuous catalyst for multiple monoterpene rearrangements. Tailored AacSHC variants directed the specific isomerization of pinene with exceptional selectivities. Success involved restructuring the aromatic active pocket and reorganizing water clusters to stabilize demanding carbocationic intermediates.
doi_str_mv 10.1002/ange.202318913
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2954677271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954677271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1573-9aa77b44cb066295df85f6319aadf797b91832ba1435ad921ee10642329803293</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMkdiTvElieOxikpbqYDEZbac5KSkSu3WToTCxMrGM_IkJA2CkeXc9P3nhtAlwROCMb1Weg0TiikjsSDsCI1ISInPeMiP0QjjIPBjGohTdObcBmMcUS5G6CMxuramqkq99m6NNjXYHWjwls5swZZvqi6N9tLWmzdl3kPJi6oq0OtDrGxqsgF5AGVtv8MWdN1nWV92Xqm9WU8DWMi9x32jOjV8vX8uzGFQ0maVcuDO0UmhKgcXP36Mnm9mT8nCX93Pl8l05Wck5MwXSnGeBkGW4iiiIsyLOCwiRrp6XnDBU0FiRlNFAhaqXFACQHAUUEZFjDvDxuhq6LuzZt-Aq-XGNFZ3I2XXLog4p5x01GSgMmucs1DInS23yraSYNm_W_anyt93dwIxCF7LCtp_aDm9m8_-tN_g3Icm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954677271</pqid></control><display><type>article</type><title>Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene‐Hopene Cyclases</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ludwig, Julian ; Curado‐Carballada, Christian ; Hammer, Stephan C. ; Schneider, Andreas ; Diether, Svenja ; Kress, Nico ; Ruiz‐Barragán, Sergi ; Osuna, Sílvia ; Hauer, Bernhard</creator><creatorcontrib>Ludwig, Julian ; Curado‐Carballada, Christian ; Hammer, Stephan C. ; Schneider, Andreas ; Diether, Svenja ; Kress, Nico ; Ruiz‐Barragán, Sergi ; Osuna, Sílvia ; Hauer, Bernhard</creatorcontrib><description>The interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast, natural monoterpene cyclases exhibit high control over the carbocation rearrangement reactions but are reliant on phosphorylated substrates. In this study, we present engineered squalene‐hopene cyclases from Alicyclobacillus acidocaldarius (AacSHC) that catalyze the challenging isomerization of monoterpenes with unprecedented precision. Starting from a promiscuous isomerization of (+)‐β‐pinene, we first demonstrate noticeable shifts in the product distribution solely by introducing single point mutations. Furthermore, we showcase the tuneable cation steering by enhancing (+)‐borneol selectivity from 1 % to &gt;90 % (&gt;99 % de) aided by iterative saturation mutagenesis. Our combined experimental and computational data suggest that the reorganization of key aromatic residues leads to the restructuring of the water network that facilitates the selective termination of the secondary isobornyl cation. This work expands our mechanistic understanding of carbocation rearrangements and sets the stage for target‐oriented skeletal reorganization of broadly abundant terpenes. Carbocation‐based rearrangements are vital for terpene versatility. AacSHC triterpene cyclase from Alicyclobacillus acidocaldarius acted as a promiscuous catalyst for multiple monoterpene rearrangements. Tailored AacSHC variants directed the specific isomerization of pinene with exceptional selectivities. Success involved restructuring the aromatic active pocket and reorganizing water clusters to stabilize demanding carbocationic intermediates.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202318913</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aromatic compounds ; Biocatalysis ; Borneol ; Brønsted Acid Catalysis ; Catalysts ; Cations ; Isomerization ; Iterative methods ; Lewis acid ; Monoterpenes ; Mutagenesis ; Saturation ; Saturation mutagenesis ; Secondary Carbocations ; Squalene ; Steering ; Substrates ; Sustainable Chemistry ; Terpenes ; Terpenoids</subject><ispartof>Angewandte Chemie, 2024-03, Vol.136 (12), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1573-9aa77b44cb066295df85f6319aadf797b91832ba1435ad921ee10642329803293</cites><orcidid>0000-0001-6259-3348</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ludwig, Julian</creatorcontrib><creatorcontrib>Curado‐Carballada, Christian</creatorcontrib><creatorcontrib>Hammer, Stephan C.</creatorcontrib><creatorcontrib>Schneider, Andreas</creatorcontrib><creatorcontrib>Diether, Svenja</creatorcontrib><creatorcontrib>Kress, Nico</creatorcontrib><creatorcontrib>Ruiz‐Barragán, Sergi</creatorcontrib><creatorcontrib>Osuna, Sílvia</creatorcontrib><creatorcontrib>Hauer, Bernhard</creatorcontrib><title>Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene‐Hopene Cyclases</title><title>Angewandte Chemie</title><description>The interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast, natural monoterpene cyclases exhibit high control over the carbocation rearrangement reactions but are reliant on phosphorylated substrates. In this study, we present engineered squalene‐hopene cyclases from Alicyclobacillus acidocaldarius (AacSHC) that catalyze the challenging isomerization of monoterpenes with unprecedented precision. Starting from a promiscuous isomerization of (+)‐β‐pinene, we first demonstrate noticeable shifts in the product distribution solely by introducing single point mutations. Furthermore, we showcase the tuneable cation steering by enhancing (+)‐borneol selectivity from 1 % to &gt;90 % (&gt;99 % de) aided by iterative saturation mutagenesis. Our combined experimental and computational data suggest that the reorganization of key aromatic residues leads to the restructuring of the water network that facilitates the selective termination of the secondary isobornyl cation. This work expands our mechanistic understanding of carbocation rearrangements and sets the stage for target‐oriented skeletal reorganization of broadly abundant terpenes. Carbocation‐based rearrangements are vital for terpene versatility. AacSHC triterpene cyclase from Alicyclobacillus acidocaldarius acted as a promiscuous catalyst for multiple monoterpene rearrangements. Tailored AacSHC variants directed the specific isomerization of pinene with exceptional selectivities. Success involved restructuring the aromatic active pocket and reorganizing water clusters to stabilize demanding carbocationic intermediates.</description><subject>Aromatic compounds</subject><subject>Biocatalysis</subject><subject>Borneol</subject><subject>Brønsted Acid Catalysis</subject><subject>Catalysts</subject><subject>Cations</subject><subject>Isomerization</subject><subject>Iterative methods</subject><subject>Lewis acid</subject><subject>Monoterpenes</subject><subject>Mutagenesis</subject><subject>Saturation</subject><subject>Saturation mutagenesis</subject><subject>Secondary Carbocations</subject><subject>Squalene</subject><subject>Steering</subject><subject>Substrates</subject><subject>Sustainable Chemistry</subject><subject>Terpenes</subject><subject>Terpenoids</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOwzAUhi0EEqWwMkdiTvElieOxikpbqYDEZbac5KSkSu3WToTCxMrGM_IkJA2CkeXc9P3nhtAlwROCMb1Weg0TiikjsSDsCI1ISInPeMiP0QjjIPBjGohTdObcBmMcUS5G6CMxuramqkq99m6NNjXYHWjwls5swZZvqi6N9tLWmzdl3kPJi6oq0OtDrGxqsgF5AGVtv8MWdN1nWV92Xqm9WU8DWMi9x32jOjV8vX8uzGFQ0maVcuDO0UmhKgcXP36Mnm9mT8nCX93Pl8l05Wck5MwXSnGeBkGW4iiiIsyLOCwiRrp6XnDBU0FiRlNFAhaqXFACQHAUUEZFjDvDxuhq6LuzZt-Aq-XGNFZ3I2XXLog4p5x01GSgMmucs1DInS23yraSYNm_W_anyt93dwIxCF7LCtp_aDm9m8_-tN_g3Icm</recordid><startdate>20240318</startdate><enddate>20240318</enddate><creator>Ludwig, Julian</creator><creator>Curado‐Carballada, Christian</creator><creator>Hammer, Stephan C.</creator><creator>Schneider, Andreas</creator><creator>Diether, Svenja</creator><creator>Kress, Nico</creator><creator>Ruiz‐Barragán, Sergi</creator><creator>Osuna, Sílvia</creator><creator>Hauer, Bernhard</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6259-3348</orcidid></search><sort><creationdate>20240318</creationdate><title>Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene‐Hopene Cyclases</title><author>Ludwig, Julian ; Curado‐Carballada, Christian ; Hammer, Stephan C. ; Schneider, Andreas ; Diether, Svenja ; Kress, Nico ; Ruiz‐Barragán, Sergi ; Osuna, Sílvia ; Hauer, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1573-9aa77b44cb066295df85f6319aadf797b91832ba1435ad921ee10642329803293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aromatic compounds</topic><topic>Biocatalysis</topic><topic>Borneol</topic><topic>Brønsted Acid Catalysis</topic><topic>Catalysts</topic><topic>Cations</topic><topic>Isomerization</topic><topic>Iterative methods</topic><topic>Lewis acid</topic><topic>Monoterpenes</topic><topic>Mutagenesis</topic><topic>Saturation</topic><topic>Saturation mutagenesis</topic><topic>Secondary Carbocations</topic><topic>Squalene</topic><topic>Steering</topic><topic>Substrates</topic><topic>Sustainable Chemistry</topic><topic>Terpenes</topic><topic>Terpenoids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludwig, Julian</creatorcontrib><creatorcontrib>Curado‐Carballada, Christian</creatorcontrib><creatorcontrib>Hammer, Stephan C.</creatorcontrib><creatorcontrib>Schneider, Andreas</creatorcontrib><creatorcontrib>Diether, Svenja</creatorcontrib><creatorcontrib>Kress, Nico</creatorcontrib><creatorcontrib>Ruiz‐Barragán, Sergi</creatorcontrib><creatorcontrib>Osuna, Sílvia</creatorcontrib><creatorcontrib>Hauer, Bernhard</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludwig, Julian</au><au>Curado‐Carballada, Christian</au><au>Hammer, Stephan C.</au><au>Schneider, Andreas</au><au>Diether, Svenja</au><au>Kress, Nico</au><au>Ruiz‐Barragán, Sergi</au><au>Osuna, Sílvia</au><au>Hauer, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene‐Hopene Cyclases</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-03-18</date><risdate>2024</risdate><volume>136</volume><issue>12</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast, natural monoterpene cyclases exhibit high control over the carbocation rearrangement reactions but are reliant on phosphorylated substrates. In this study, we present engineered squalene‐hopene cyclases from Alicyclobacillus acidocaldarius (AacSHC) that catalyze the challenging isomerization of monoterpenes with unprecedented precision. Starting from a promiscuous isomerization of (+)‐β‐pinene, we first demonstrate noticeable shifts in the product distribution solely by introducing single point mutations. Furthermore, we showcase the tuneable cation steering by enhancing (+)‐borneol selectivity from 1 % to &gt;90 % (&gt;99 % de) aided by iterative saturation mutagenesis. Our combined experimental and computational data suggest that the reorganization of key aromatic residues leads to the restructuring of the water network that facilitates the selective termination of the secondary isobornyl cation. This work expands our mechanistic understanding of carbocation rearrangements and sets the stage for target‐oriented skeletal reorganization of broadly abundant terpenes. Carbocation‐based rearrangements are vital for terpene versatility. AacSHC triterpene cyclase from Alicyclobacillus acidocaldarius acted as a promiscuous catalyst for multiple monoterpene rearrangements. Tailored AacSHC variants directed the specific isomerization of pinene with exceptional selectivities. Success involved restructuring the aromatic active pocket and reorganizing water clusters to stabilize demanding carbocationic intermediates.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202318913</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6259-3348</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-03, Vol.136 (12), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2954677271
source Wiley-Blackwell Read & Publish Collection
subjects Aromatic compounds
Biocatalysis
Borneol
Brønsted Acid Catalysis
Catalysts
Cations
Isomerization
Iterative methods
Lewis acid
Monoterpenes
Mutagenesis
Saturation
Saturation mutagenesis
Secondary Carbocations
Squalene
Steering
Substrates
Sustainable Chemistry
Terpenes
Terpenoids
title Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene‐Hopene Cyclases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Monoterpene%20Isomerization%20by%20Guiding%20Challenging%20Carbocation%20Rearrangement%20Reactions%20in%20Engineered%20Squalene%E2%80%90Hopene%20Cyclases&rft.jtitle=Angewandte%20Chemie&rft.au=Ludwig,%20Julian&rft.date=2024-03-18&rft.volume=136&rft.issue=12&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202318913&rft_dat=%3Cproquest_cross%3E2954677271%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1573-9aa77b44cb066295df85f6319aadf797b91832ba1435ad921ee10642329803293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954677271&rft_id=info:pmid/&rfr_iscdi=true