Loading…

The problem of finding the kernels in the system for integro-differential acoustic equations

We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respec...

Full description

Saved in:
Bibliographic Details
Main Authors: Bozorov, Zavqiddin, Turdiev, Halim
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3004
creator Bozorov, Zavqiddin
Turdiev, Halim
description We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given problems.
doi_str_mv 10.1063/5.0199964
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2954998157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954998157</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-d97fece590a7fd73b0d1907de1e03d595bb9b79cf7aded51b36bae6dbc7558793</originalsourceid><addsrcrecordid>eNotkEFLAzEQhYMoWKsH_8GCN2Fr0mw2naMUrULBSwUPQkg2k5q63bRJ9tB_79r2NLzHx7yZR8g9oxNGa_4kJpQBQF1dkBETgpWyZvUlGVEKVTmt-Nc1uUlpQ-kUpJyNyPfqB4tdDKbFbRFc4Xxnfbcu8mD_YuywTYXvjjIdUh4gF-LgZFzHUFrvHEbsstdtoZvQp-ybAve9zj506ZZcOd0mvDvPMfl8fVnN38rlx-J9_rwsd4zzXFqQDhsUQLV0VnJDLQMqLTKk3AoQxoCR0DipLVrBDK-NxtqaRgoxk8DH5OG0d3hk32PKahP62A2RagqiApgxIQfq8USlxufjgWoX_VbHg2JU_benhDq3x_8AiwVjdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2954998157</pqid></control><display><type>conference_proceeding</type><title>The problem of finding the kernels in the system for integro-differential acoustic equations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bozorov, Zavqiddin ; Turdiev, Halim</creator><contributor>Shadimetov, Kholmat M. ; Hayotov, Abdullo R. ; Durdiev, Durdimurod K. ; Jalolov, Ozodjon I. ; Babaev, Samandar S.</contributor><creatorcontrib>Bozorov, Zavqiddin ; Turdiev, Halim ; Shadimetov, Kholmat M. ; Hayotov, Abdullo R. ; Durdiev, Durdimurod K. ; Jalolov, Ozodjon I. ; Babaev, Samandar S.</creatorcontrib><description>We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given problems.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0199964</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic waves ; Continuity (mathematics) ; Differential equations ; Existence theorems ; Fourier transforms ; Integral equations ; Inverse problems ; Mathematical analysis ; Uniqueness theorems ; Wave velocity</subject><ispartof>AIP conference proceedings, 2024, Vol.3004 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23911,23912,25120,27903,27904</link.rule.ids></links><search><contributor>Shadimetov, Kholmat M.</contributor><contributor>Hayotov, Abdullo R.</contributor><contributor>Durdiev, Durdimurod K.</contributor><contributor>Jalolov, Ozodjon I.</contributor><contributor>Babaev, Samandar S.</contributor><creatorcontrib>Bozorov, Zavqiddin</creatorcontrib><creatorcontrib>Turdiev, Halim</creatorcontrib><title>The problem of finding the kernels in the system for integro-differential acoustic equations</title><title>AIP conference proceedings</title><description>We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given problems.</description><subject>Acoustic waves</subject><subject>Continuity (mathematics)</subject><subject>Differential equations</subject><subject>Existence theorems</subject><subject>Fourier transforms</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Uniqueness theorems</subject><subject>Wave velocity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEFLAzEQhYMoWKsH_8GCN2Fr0mw2naMUrULBSwUPQkg2k5q63bRJ9tB_79r2NLzHx7yZR8g9oxNGa_4kJpQBQF1dkBETgpWyZvUlGVEKVTmt-Nc1uUlpQ-kUpJyNyPfqB4tdDKbFbRFc4Xxnfbcu8mD_YuywTYXvjjIdUh4gF-LgZFzHUFrvHEbsstdtoZvQp-ybAve9zj506ZZcOd0mvDvPMfl8fVnN38rlx-J9_rwsd4zzXFqQDhsUQLV0VnJDLQMqLTKk3AoQxoCR0DipLVrBDK-NxtqaRgoxk8DH5OG0d3hk32PKahP62A2RagqiApgxIQfq8USlxufjgWoX_VbHg2JU_benhDq3x_8AiwVjdg</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>Bozorov, Zavqiddin</creator><creator>Turdiev, Halim</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240311</creationdate><title>The problem of finding the kernels in the system for integro-differential acoustic equations</title><author>Bozorov, Zavqiddin ; Turdiev, Halim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-d97fece590a7fd73b0d1907de1e03d595bb9b79cf7aded51b36bae6dbc7558793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Continuity (mathematics)</topic><topic>Differential equations</topic><topic>Existence theorems</topic><topic>Fourier transforms</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Uniqueness theorems</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozorov, Zavqiddin</creatorcontrib><creatorcontrib>Turdiev, Halim</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozorov, Zavqiddin</au><au>Turdiev, Halim</au><au>Shadimetov, Kholmat M.</au><au>Hayotov, Abdullo R.</au><au>Durdiev, Durdimurod K.</au><au>Jalolov, Ozodjon I.</au><au>Babaev, Samandar S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The problem of finding the kernels in the system for integro-differential acoustic equations</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-11</date><risdate>2024</risdate><volume>3004</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given problems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0199964</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3004 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2954998157
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Acoustic waves
Continuity (mathematics)
Differential equations
Existence theorems
Fourier transforms
Integral equations
Inverse problems
Mathematical analysis
Uniqueness theorems
Wave velocity
title The problem of finding the kernels in the system for integro-differential acoustic equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20problem%20of%20finding%20the%20kernels%20in%20the%20system%20for%20integro-differential%20acoustic%20equations&rft.btitle=AIP%20conference%20proceedings&rft.au=Bozorov,%20Zavqiddin&rft.date=2024-03-11&rft.volume=3004&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0199964&rft_dat=%3Cproquest_scita%3E2954998157%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-d97fece590a7fd73b0d1907de1e03d595bb9b79cf7aded51b36bae6dbc7558793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954998157&rft_id=info:pmid/&rfr_iscdi=true