Loading…
The problem of finding the kernels in the system for integro-differential acoustic equations
We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respec...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3004 |
creator | Bozorov, Zavqiddin Turdiev, Halim |
description | We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given problems. |
doi_str_mv | 10.1063/5.0199964 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2954998157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954998157</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-d97fece590a7fd73b0d1907de1e03d595bb9b79cf7aded51b36bae6dbc7558793</originalsourceid><addsrcrecordid>eNotkEFLAzEQhYMoWKsH_8GCN2Fr0mw2naMUrULBSwUPQkg2k5q63bRJ9tB_79r2NLzHx7yZR8g9oxNGa_4kJpQBQF1dkBETgpWyZvUlGVEKVTmt-Nc1uUlpQ-kUpJyNyPfqB4tdDKbFbRFc4Xxnfbcu8mD_YuywTYXvjjIdUh4gF-LgZFzHUFrvHEbsstdtoZvQp-ybAve9zj506ZZcOd0mvDvPMfl8fVnN38rlx-J9_rwsd4zzXFqQDhsUQLV0VnJDLQMqLTKk3AoQxoCR0DipLVrBDK-NxtqaRgoxk8DH5OG0d3hk32PKahP62A2RagqiApgxIQfq8USlxufjgWoX_VbHg2JU_benhDq3x_8AiwVjdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2954998157</pqid></control><display><type>conference_proceeding</type><title>The problem of finding the kernels in the system for integro-differential acoustic equations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bozorov, Zavqiddin ; Turdiev, Halim</creator><contributor>Shadimetov, Kholmat M. ; Hayotov, Abdullo R. ; Durdiev, Durdimurod K. ; Jalolov, Ozodjon I. ; Babaev, Samandar S.</contributor><creatorcontrib>Bozorov, Zavqiddin ; Turdiev, Halim ; Shadimetov, Kholmat M. ; Hayotov, Abdullo R. ; Durdiev, Durdimurod K. ; Jalolov, Ozodjon I. ; Babaev, Samandar S.</creatorcontrib><description>We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given problems.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0199964</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic waves ; Continuity (mathematics) ; Differential equations ; Existence theorems ; Fourier transforms ; Integral equations ; Inverse problems ; Mathematical analysis ; Uniqueness theorems ; Wave velocity</subject><ispartof>AIP conference proceedings, 2024, Vol.3004 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23911,23912,25120,27903,27904</link.rule.ids></links><search><contributor>Shadimetov, Kholmat M.</contributor><contributor>Hayotov, Abdullo R.</contributor><contributor>Durdiev, Durdimurod K.</contributor><contributor>Jalolov, Ozodjon I.</contributor><contributor>Babaev, Samandar S.</contributor><creatorcontrib>Bozorov, Zavqiddin</creatorcontrib><creatorcontrib>Turdiev, Halim</creatorcontrib><title>The problem of finding the kernels in the system for integro-differential acoustic equations</title><title>AIP conference proceedings</title><description>We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given problems.</description><subject>Acoustic waves</subject><subject>Continuity (mathematics)</subject><subject>Differential equations</subject><subject>Existence theorems</subject><subject>Fourier transforms</subject><subject>Integral equations</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Uniqueness theorems</subject><subject>Wave velocity</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEFLAzEQhYMoWKsH_8GCN2Fr0mw2naMUrULBSwUPQkg2k5q63bRJ9tB_79r2NLzHx7yZR8g9oxNGa_4kJpQBQF1dkBETgpWyZvUlGVEKVTmt-Nc1uUlpQ-kUpJyNyPfqB4tdDKbFbRFc4Xxnfbcu8mD_YuywTYXvjjIdUh4gF-LgZFzHUFrvHEbsstdtoZvQp-ybAve9zj506ZZcOd0mvDvPMfl8fVnN38rlx-J9_rwsd4zzXFqQDhsUQLV0VnJDLQMqLTKk3AoQxoCR0DipLVrBDK-NxtqaRgoxk8DH5OG0d3hk32PKahP62A2RagqiApgxIQfq8USlxufjgWoX_VbHg2JU_benhDq3x_8AiwVjdg</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>Bozorov, Zavqiddin</creator><creator>Turdiev, Halim</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240311</creationdate><title>The problem of finding the kernels in the system for integro-differential acoustic equations</title><author>Bozorov, Zavqiddin ; Turdiev, Halim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-d97fece590a7fd73b0d1907de1e03d595bb9b79cf7aded51b36bae6dbc7558793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic waves</topic><topic>Continuity (mathematics)</topic><topic>Differential equations</topic><topic>Existence theorems</topic><topic>Fourier transforms</topic><topic>Integral equations</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Uniqueness theorems</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozorov, Zavqiddin</creatorcontrib><creatorcontrib>Turdiev, Halim</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozorov, Zavqiddin</au><au>Turdiev, Halim</au><au>Shadimetov, Kholmat M.</au><au>Hayotov, Abdullo R.</au><au>Durdiev, Durdimurod K.</au><au>Jalolov, Ozodjon I.</au><au>Babaev, Samandar S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The problem of finding the kernels in the system for integro-differential acoustic equations</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-11</date><risdate>2024</risdate><volume>3004</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We pose the direct and inverse problem of finding the acoustic wave velocity and pressure, diagonal memory matrix for a reduced canonical system of integro-differential acoustic equations. The problems are replaced by a closed system of Volterra-type integral equations of the second kind with respect to the Fourier transform in the variables x1 and x2 of the solution of the unknowns of the direct problem and the inverse problem. To this system, we then apply a reduction method, a mapping in the space of continuous functions with a weighted norm. Thus, we prove global existence and uniqueness theorems to solve the given problems.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0199964</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3004 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2954998157 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Acoustic waves Continuity (mathematics) Differential equations Existence theorems Fourier transforms Integral equations Inverse problems Mathematical analysis Uniqueness theorems Wave velocity |
title | The problem of finding the kernels in the system for integro-differential acoustic equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20problem%20of%20finding%20the%20kernels%20in%20the%20system%20for%20integro-differential%20acoustic%20equations&rft.btitle=AIP%20conference%20proceedings&rft.au=Bozorov,%20Zavqiddin&rft.date=2024-03-11&rft.volume=3004&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0199964&rft_dat=%3Cproquest_scita%3E2954998157%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p133t-d97fece590a7fd73b0d1907de1e03d595bb9b79cf7aded51b36bae6dbc7558793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954998157&rft_id=info:pmid/&rfr_iscdi=true |