Loading…

Forecasting household electricity demand in India: A long short-term memory approach

With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long S...

Full description

Saved in:
Bibliographic Details
Main Authors: Pallaiyah, Solainayagi, Kumar, Ankit, Raj, Adity, Kumar, Rohan, Nihal, Muhammed, Rajendran, Mohanapriya, Govindaraj, Jijina
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3042
creator Pallaiyah, Solainayagi
Kumar, Ankit
Raj, Adity
Kumar, Rohan
Nihal, Muhammed
Rajendran, Mohanapriya
Govindaraj, Jijina
description With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long Short-Term Memory (LSTM) shows the neural networks to prevent household electricity consumption in India. The LSTM model was implemented using the Keras library in Python. The model was trained using the training set and tested using the testing set. The study demonstrated that LSTM neural networks are a promising approach to predicting household electricity consumption in India. Further research can be conducted to recover the accuracy of the perfect by including more variables such as household size, income, and appliance usage.
doi_str_mv 10.1063/5.0193949
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2955869600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955869600</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1689-4492bb32fe28348cb4a97ccbb15057ddcf594727204fc0ee0736163babbdec903</originalsourceid><addsrcrecordid>eNotkE1LwzAAhoMoOKcH_0HAm9CZz6bxNoabg4GXCd5Cvmo72qYm2WH_3o7t9F4e3of3BeAZowVGJX3jC4QllUzegBnmHBeixOUtmCEkWUEY_bkHDykdECJSiGoG9usQvdUpt8MvbMIx-SZ0DvrO2xxb2-YTdL7Xg4PtALeDa_U7XMIuTHRqQsxF9rGHve9DPEE9jjFo2zyCu1p3yT9dcw6-1x_71Wex-9psV8tdMeKykgVjkhhDSe1JRVllDdNSWGsM5ogL52zNJRNEEMRqi7xHgk5jqNHGOG8lonPwcumdtH9Hn7I6hGMcJqUikvOqlCU6U68XKk1zdG7DoMbY9jqeFEbq_Jri6voa_Qc1nV7t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2955869600</pqid></control><display><type>conference_proceeding</type><title>Forecasting household electricity demand in India: A long short-term memory approach</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pallaiyah, Solainayagi ; Kumar, Ankit ; Raj, Adity ; Kumar, Rohan ; Nihal, Muhammed ; Rajendran, Mohanapriya ; Govindaraj, Jijina</creator><contributor>Vasanthi, S. Mary ; Allasi, Haiter Lenin ; Ejigu, Assamen Ayalew</contributor><creatorcontrib>Pallaiyah, Solainayagi ; Kumar, Ankit ; Raj, Adity ; Kumar, Rohan ; Nihal, Muhammed ; Rajendran, Mohanapriya ; Govindaraj, Jijina ; Vasanthi, S. Mary ; Allasi, Haiter Lenin ; Ejigu, Assamen Ayalew</creatorcontrib><description>With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long Short-Term Memory (LSTM) shows the neural networks to prevent household electricity consumption in India. The LSTM model was implemented using the Keras library in Python. The model was trained using the training set and tested using the testing set. The study demonstrated that LSTM neural networks are a promising approach to predicting household electricity consumption in India. Further research can be conducted to recover the accuracy of the perfect by including more variables such as household size, income, and appliance usage.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0193949</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Electric power demand ; Electricity consumption ; Energy consumption ; Neural networks</subject><ispartof>AIP conference proceedings, 2024, Vol.3042 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Vasanthi, S. Mary</contributor><contributor>Allasi, Haiter Lenin</contributor><contributor>Ejigu, Assamen Ayalew</contributor><creatorcontrib>Pallaiyah, Solainayagi</creatorcontrib><creatorcontrib>Kumar, Ankit</creatorcontrib><creatorcontrib>Raj, Adity</creatorcontrib><creatorcontrib>Kumar, Rohan</creatorcontrib><creatorcontrib>Nihal, Muhammed</creatorcontrib><creatorcontrib>Rajendran, Mohanapriya</creatorcontrib><creatorcontrib>Govindaraj, Jijina</creatorcontrib><title>Forecasting household electricity demand in India: A long short-term memory approach</title><title>AIP conference proceedings</title><description>With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long Short-Term Memory (LSTM) shows the neural networks to prevent household electricity consumption in India. The LSTM model was implemented using the Keras library in Python. The model was trained using the training set and tested using the testing set. The study demonstrated that LSTM neural networks are a promising approach to predicting household electricity consumption in India. Further research can be conducted to recover the accuracy of the perfect by including more variables such as household size, income, and appliance usage.</description><subject>Electric power demand</subject><subject>Electricity consumption</subject><subject>Energy consumption</subject><subject>Neural networks</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LwzAAhoMoOKcH_0HAm9CZz6bxNoabg4GXCd5Cvmo72qYm2WH_3o7t9F4e3of3BeAZowVGJX3jC4QllUzegBnmHBeixOUtmCEkWUEY_bkHDykdECJSiGoG9usQvdUpt8MvbMIx-SZ0DvrO2xxb2-YTdL7Xg4PtALeDa_U7XMIuTHRqQsxF9rGHve9DPEE9jjFo2zyCu1p3yT9dcw6-1x_71Wex-9psV8tdMeKykgVjkhhDSe1JRVllDdNSWGsM5ogL52zNJRNEEMRqi7xHgk5jqNHGOG8lonPwcumdtH9Hn7I6hGMcJqUikvOqlCU6U68XKk1zdG7DoMbY9jqeFEbq_Jri6voa_Qc1nV7t</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Pallaiyah, Solainayagi</creator><creator>Kumar, Ankit</creator><creator>Raj, Adity</creator><creator>Kumar, Rohan</creator><creator>Nihal, Muhammed</creator><creator>Rajendran, Mohanapriya</creator><creator>Govindaraj, Jijina</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240312</creationdate><title>Forecasting household electricity demand in India: A long short-term memory approach</title><author>Pallaiyah, Solainayagi ; Kumar, Ankit ; Raj, Adity ; Kumar, Rohan ; Nihal, Muhammed ; Rajendran, Mohanapriya ; Govindaraj, Jijina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1689-4492bb32fe28348cb4a97ccbb15057ddcf594727204fc0ee0736163babbdec903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric power demand</topic><topic>Electricity consumption</topic><topic>Energy consumption</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pallaiyah, Solainayagi</creatorcontrib><creatorcontrib>Kumar, Ankit</creatorcontrib><creatorcontrib>Raj, Adity</creatorcontrib><creatorcontrib>Kumar, Rohan</creatorcontrib><creatorcontrib>Nihal, Muhammed</creatorcontrib><creatorcontrib>Rajendran, Mohanapriya</creatorcontrib><creatorcontrib>Govindaraj, Jijina</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pallaiyah, Solainayagi</au><au>Kumar, Ankit</au><au>Raj, Adity</au><au>Kumar, Rohan</au><au>Nihal, Muhammed</au><au>Rajendran, Mohanapriya</au><au>Govindaraj, Jijina</au><au>Vasanthi, S. Mary</au><au>Allasi, Haiter Lenin</au><au>Ejigu, Assamen Ayalew</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Forecasting household electricity demand in India: A long short-term memory approach</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-12</date><risdate>2024</risdate><volume>3042</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long Short-Term Memory (LSTM) shows the neural networks to prevent household electricity consumption in India. The LSTM model was implemented using the Keras library in Python. The model was trained using the training set and tested using the testing set. The study demonstrated that LSTM neural networks are a promising approach to predicting household electricity consumption in India. Further research can be conducted to recover the accuracy of the perfect by including more variables such as household size, income, and appliance usage.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0193949</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3042 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2955869600
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Electric power demand
Electricity consumption
Energy consumption
Neural networks
title Forecasting household electricity demand in India: A long short-term memory approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Forecasting%20household%20electricity%20demand%20in%20India:%20A%20long%20short-term%20memory%20approach&rft.btitle=AIP%20conference%20proceedings&rft.au=Pallaiyah,%20Solainayagi&rft.date=2024-03-12&rft.volume=3042&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0193949&rft_dat=%3Cproquest_scita%3E2955869600%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1689-4492bb32fe28348cb4a97ccbb15057ddcf594727204fc0ee0736163babbdec903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955869600&rft_id=info:pmid/&rfr_iscdi=true