Loading…
Forecasting household electricity demand in India: A long short-term memory approach
With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long S...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3042 |
creator | Pallaiyah, Solainayagi Kumar, Ankit Raj, Adity Kumar, Rohan Nihal, Muhammed Rajendran, Mohanapriya Govindaraj, Jijina |
description | With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long Short-Term Memory (LSTM) shows the neural networks to prevent household electricity consumption in India. The LSTM model was implemented using the Keras library in Python. The model was trained using the training set and tested using the testing set. The study demonstrated that LSTM neural networks are a promising approach to predicting household electricity consumption in India. Further research can be conducted to recover the accuracy of the perfect by including more variables such as household size, income, and appliance usage. |
doi_str_mv | 10.1063/5.0193949 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2955869600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2955869600</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1689-4492bb32fe28348cb4a97ccbb15057ddcf594727204fc0ee0736163babbdec903</originalsourceid><addsrcrecordid>eNotkE1LwzAAhoMoOKcH_0HAm9CZz6bxNoabg4GXCd5Cvmo72qYm2WH_3o7t9F4e3of3BeAZowVGJX3jC4QllUzegBnmHBeixOUtmCEkWUEY_bkHDykdECJSiGoG9usQvdUpt8MvbMIx-SZ0DvrO2xxb2-YTdL7Xg4PtALeDa_U7XMIuTHRqQsxF9rGHve9DPEE9jjFo2zyCu1p3yT9dcw6-1x_71Wex-9psV8tdMeKykgVjkhhDSe1JRVllDdNSWGsM5ogL52zNJRNEEMRqi7xHgk5jqNHGOG8lonPwcumdtH9Hn7I6hGMcJqUikvOqlCU6U68XKk1zdG7DoMbY9jqeFEbq_Jri6voa_Qc1nV7t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2955869600</pqid></control><display><type>conference_proceeding</type><title>Forecasting household electricity demand in India: A long short-term memory approach</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Pallaiyah, Solainayagi ; Kumar, Ankit ; Raj, Adity ; Kumar, Rohan ; Nihal, Muhammed ; Rajendran, Mohanapriya ; Govindaraj, Jijina</creator><contributor>Vasanthi, S. Mary ; Allasi, Haiter Lenin ; Ejigu, Assamen Ayalew</contributor><creatorcontrib>Pallaiyah, Solainayagi ; Kumar, Ankit ; Raj, Adity ; Kumar, Rohan ; Nihal, Muhammed ; Rajendran, Mohanapriya ; Govindaraj, Jijina ; Vasanthi, S. Mary ; Allasi, Haiter Lenin ; Ejigu, Assamen Ayalew</creatorcontrib><description>With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long Short-Term Memory (LSTM) shows the neural networks to prevent household electricity consumption in India. The LSTM model was implemented using the Keras library in Python. The model was trained using the training set and tested using the testing set. The study demonstrated that LSTM neural networks are a promising approach to predicting household electricity consumption in India. Further research can be conducted to recover the accuracy of the perfect by including more variables such as household size, income, and appliance usage.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0193949</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Electric power demand ; Electricity consumption ; Energy consumption ; Neural networks</subject><ispartof>AIP conference proceedings, 2024, Vol.3042 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,777,781,786,787,23911,23912,25121,27905,27906</link.rule.ids></links><search><contributor>Vasanthi, S. Mary</contributor><contributor>Allasi, Haiter Lenin</contributor><contributor>Ejigu, Assamen Ayalew</contributor><creatorcontrib>Pallaiyah, Solainayagi</creatorcontrib><creatorcontrib>Kumar, Ankit</creatorcontrib><creatorcontrib>Raj, Adity</creatorcontrib><creatorcontrib>Kumar, Rohan</creatorcontrib><creatorcontrib>Nihal, Muhammed</creatorcontrib><creatorcontrib>Rajendran, Mohanapriya</creatorcontrib><creatorcontrib>Govindaraj, Jijina</creatorcontrib><title>Forecasting household electricity demand in India: A long short-term memory approach</title><title>AIP conference proceedings</title><description>With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long Short-Term Memory (LSTM) shows the neural networks to prevent household electricity consumption in India. The LSTM model was implemented using the Keras library in Python. The model was trained using the training set and tested using the testing set. The study demonstrated that LSTM neural networks are a promising approach to predicting household electricity consumption in India. Further research can be conducted to recover the accuracy of the perfect by including more variables such as household size, income, and appliance usage.</description><subject>Electric power demand</subject><subject>Electricity consumption</subject><subject>Energy consumption</subject><subject>Neural networks</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LwzAAhoMoOKcH_0HAm9CZz6bxNoabg4GXCd5Cvmo72qYm2WH_3o7t9F4e3of3BeAZowVGJX3jC4QllUzegBnmHBeixOUtmCEkWUEY_bkHDykdECJSiGoG9usQvdUpt8MvbMIx-SZ0DvrO2xxb2-YTdL7Xg4PtALeDa_U7XMIuTHRqQsxF9rGHve9DPEE9jjFo2zyCu1p3yT9dcw6-1x_71Wex-9psV8tdMeKykgVjkhhDSe1JRVllDdNSWGsM5ogL52zNJRNEEMRqi7xHgk5jqNHGOG8lonPwcumdtH9Hn7I6hGMcJqUikvOqlCU6U68XKk1zdG7DoMbY9jqeFEbq_Jri6voa_Qc1nV7t</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Pallaiyah, Solainayagi</creator><creator>Kumar, Ankit</creator><creator>Raj, Adity</creator><creator>Kumar, Rohan</creator><creator>Nihal, Muhammed</creator><creator>Rajendran, Mohanapriya</creator><creator>Govindaraj, Jijina</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240312</creationdate><title>Forecasting household electricity demand in India: A long short-term memory approach</title><author>Pallaiyah, Solainayagi ; Kumar, Ankit ; Raj, Adity ; Kumar, Rohan ; Nihal, Muhammed ; Rajendran, Mohanapriya ; Govindaraj, Jijina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1689-4492bb32fe28348cb4a97ccbb15057ddcf594727204fc0ee0736163babbdec903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric power demand</topic><topic>Electricity consumption</topic><topic>Energy consumption</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pallaiyah, Solainayagi</creatorcontrib><creatorcontrib>Kumar, Ankit</creatorcontrib><creatorcontrib>Raj, Adity</creatorcontrib><creatorcontrib>Kumar, Rohan</creatorcontrib><creatorcontrib>Nihal, Muhammed</creatorcontrib><creatorcontrib>Rajendran, Mohanapriya</creatorcontrib><creatorcontrib>Govindaraj, Jijina</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pallaiyah, Solainayagi</au><au>Kumar, Ankit</au><au>Raj, Adity</au><au>Kumar, Rohan</au><au>Nihal, Muhammed</au><au>Rajendran, Mohanapriya</au><au>Govindaraj, Jijina</au><au>Vasanthi, S. Mary</au><au>Allasi, Haiter Lenin</au><au>Ejigu, Assamen Ayalew</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Forecasting household electricity demand in India: A long short-term memory approach</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-12</date><risdate>2024</risdate><volume>3042</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>With the increasing demand for energy worldwide, it has become imperative to explore and adopt sustainable energy practices. In this regard, predicting household electricity consumption accurately is essential, as it can help optimize energy usage and reduce waste. This paper focuses on using Long Short-Term Memory (LSTM) shows the neural networks to prevent household electricity consumption in India. The LSTM model was implemented using the Keras library in Python. The model was trained using the training set and tested using the testing set. The study demonstrated that LSTM neural networks are a promising approach to predicting household electricity consumption in India. Further research can be conducted to recover the accuracy of the perfect by including more variables such as household size, income, and appliance usage.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0193949</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3042 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2955869600 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Electric power demand Electricity consumption Energy consumption Neural networks |
title | Forecasting household electricity demand in India: A long short-term memory approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Forecasting%20household%20electricity%20demand%20in%20India:%20A%20long%20short-term%20memory%20approach&rft.btitle=AIP%20conference%20proceedings&rft.au=Pallaiyah,%20Solainayagi&rft.date=2024-03-12&rft.volume=3042&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0193949&rft_dat=%3Cproquest_scita%3E2955869600%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1689-4492bb32fe28348cb4a97ccbb15057ddcf594727204fc0ee0736163babbdec903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955869600&rft_id=info:pmid/&rfr_iscdi=true |