Loading…

Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles

As urban centers evolve into smart cities, sustainable mobility emerges as a cornerstone for ensuring environmental integrity and enhancing quality of life. Autonomous vehicles (AVs) play a pivotal role in this transformation, with the potential to significantly improve efficiency and safety, and re...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-03, Vol.16 (5), p.1779
Main Authors: Louati, Ali, Louati, Hassen, Kariri, Elham, Neifar, Wafa, Hassan, Mohamed K, Khairi, Mutaz H. H, Farahat, Mohammed A, El-Hoseny, Heba M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As urban centers evolve into smart cities, sustainable mobility emerges as a cornerstone for ensuring environmental integrity and enhancing quality of life. Autonomous vehicles (AVs) play a pivotal role in this transformation, with the potential to significantly improve efficiency and safety, and reduce environmental impacts. This study introduces a novel Multi-Agent Actor–Critic (MA2C) algorithm tailored for multi-AV lane-changing in mixed-traffic scenarios, a critical component of intelligent transportation systems in smart cities. By incorporating a local reward system that values efficiency, safety, and passenger comfort, and a parameter-sharing scheme that encourages inter-agent collaboration, our MA2C algorithm presents a comprehensive approach to urban traffic management. The MA2C algorithm leverages reinforcement learning to optimize lane-changing decisions, ensuring optimal traffic flow and enhancing both environmental sustainability and urban living standards. The actor–critic architecture is refined to minimize variances in urban traffic conditions, enhancing predictability and safety. The study extends to simulating realistic human-driven vehicle (HDV) behavior using the Intelligent Driver Model (IDM) and the model of Minimizing Overall Braking Induced by Lane changes (MOBIL), contributing to more accurate and effective traffic management strategies. Empirical results indicate that the MA2C algorithm outperforms existing state-of-the-art models in managing lane changes, passenger comfort, and inter-vehicle cooperation, essential for the dynamic environment of smart cities. The success of the MA2C algorithm in facilitating seamless interaction between AVs and HDVs holds promise for more fluid urban traffic conditions, reduced congestion, and lower emissions. This research contributes to the growing body of knowledge on autonomous driving within the framework of sustainable smart cities, focusing on the integration of AVs into the urban fabric. It underscores the potential of machine learning and artificial intelligence in developing transportation systems that are not only efficient and safe but also sustainable, supporting the broader goals of creating resilient, adaptive, and environmentally friendly urban spaces.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16051779