Loading…

Predicting the anthropogenic impacts on vegetation diversity of protected rangelands: an application of artificial intelligence

This study delves into anthropogenic impacts on vegetation diversity within mountainous protected rangelands, exploring habitat weakening and biodiversity loss. Employing artificial intelligence, specifically multilayer perceptron (MLP), radial basis neural network (RBFNN), and support vector regres...

Full description

Saved in:
Bibliographic Details
Published in:Biodiversity and conservation 2024-03, Vol.33 (3), p.1051-1078
Main Authors: Jahani, Ali, Saffariha, Maryam, Nezhad, Zeinab Hosein
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c342t-892bf73a22a15dbaf626ce2cafcdf160ed48dad7669223b6b2a0bcbff77d4c6f3
container_end_page 1078
container_issue 3
container_start_page 1051
container_title Biodiversity and conservation
container_volume 33
creator Jahani, Ali
Saffariha, Maryam
Nezhad, Zeinab Hosein
description This study delves into anthropogenic impacts on vegetation diversity within mountainous protected rangelands, exploring habitat weakening and biodiversity loss. Employing artificial intelligence, specifically multilayer perceptron (MLP), radial basis neural network (RBFNN), and support vector regression (SVR), we predict vegetation diversity responses to ecological conditions, livestock grazing, and tourism. Assessing 305 sample plots with 21 variables, the MLP model demonstrated superior accuracy (R 2  = 0.93 in training, R 2  = 0.81 in the test dataset) compared to RBFNN and SVR. Sensitivity analyses highlighted anthropogenic factors like distance to tourist destinations, roads, pastures, and animal husbandries as significant influencers of vegetation diversity in mountainous protected rangelands. To enhance practical application, a user-friendly graphical interface was developed, enabling rangeland managers to utilize the MLP model. This tool facilitates estimation of livestock grazing and tourism impacts on vegetation diversity, empowering informed decision-making for the preservation and sustainability of mountainous protected rangeland ecosystems.
doi_str_mv 10.1007/s10531-024-02783-3
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2956010730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786254338</galeid><sourcerecordid>A786254338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-892bf73a22a15dbaf626ce2cafcdf160ed48dad7669223b6b2a0bcbff77d4c6f3</originalsourceid><addsrcrecordid>eNp9kU1rHSEUhqW00NskfyAroZtuJvVjRme6C6FfEGgX7VrO6HFimKtT9Qay6l-P7RQKXRQRRZ5HX3wJueTsijOm3xbOBsk7Jvo29Sg7-Ywc-KBFN2nOnpMDmxTrJOfDS_KqlHvWpEHxA_n5NaMLtoa40HqHFGK9y2lLC8ZgaThuYGuhKdIHXLBCDW3rwgPmEuojTZ5uOVW0FR3NEBdcIbryrl1DYdvWYHejcZBr8MEGWGmIFdc1tCcsnpMXHtaCF3_WM_L9w_tvN5-62y8fP99c33ZW9qJ24yRmryUIAXxwM3gllEVhwVvnuWLo-tGB00pNQshZzQLYbGfvtXa9VV6ekTf7vS3vjxOWao6h2BYDIqZTMZIPUgkx8b6hr_9B79Mpx5bOiGlQjDMtWaOudmqBFU2IPtUMtg2Hx2BTRB_a-bUelRh6KccmiF2wOZWS0ZsthyPkR8OZ-VWi2Us0rUTzu0QjmyR3qTS4fW_-m-U_1hNi66KZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956010730</pqid></control><display><type>article</type><title>Predicting the anthropogenic impacts on vegetation diversity of protected rangelands: an application of artificial intelligence</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Jahani, Ali ; Saffariha, Maryam ; Nezhad, Zeinab Hosein</creator><creatorcontrib>Jahani, Ali ; Saffariha, Maryam ; Nezhad, Zeinab Hosein</creatorcontrib><description>This study delves into anthropogenic impacts on vegetation diversity within mountainous protected rangelands, exploring habitat weakening and biodiversity loss. Employing artificial intelligence, specifically multilayer perceptron (MLP), radial basis neural network (RBFNN), and support vector regression (SVR), we predict vegetation diversity responses to ecological conditions, livestock grazing, and tourism. Assessing 305 sample plots with 21 variables, the MLP model demonstrated superior accuracy (R 2  = 0.93 in training, R 2  = 0.81 in the test dataset) compared to RBFNN and SVR. Sensitivity analyses highlighted anthropogenic factors like distance to tourist destinations, roads, pastures, and animal husbandries as significant influencers of vegetation diversity in mountainous protected rangelands. To enhance practical application, a user-friendly graphical interface was developed, enabling rangeland managers to utilize the MLP model. This tool facilitates estimation of livestock grazing and tourism impacts on vegetation diversity, empowering informed decision-making for the preservation and sustainability of mountainous protected rangeland ecosystems.</description><identifier>ISSN: 0960-3115</identifier><identifier>EISSN: 1572-9710</identifier><identifier>DOI: 10.1007/s10531-024-02783-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anthropogenic factors ; Artificial intelligence ; Biodiversity ; Biodiversity loss ; Biological diversity ; Biomedical and Life Sciences ; Climate Change/Climate Change Impacts ; Conservation Biology/Ecology ; data collection ; Decision making ; Ecological conditions ; Ecology ; Ecosystems ; Grazing ; Habitats ; Human influences ; Impact prediction ; Life Sciences ; Livestock ; Livestock grazing ; Model accuracy ; Mountains ; Multilayer perceptrons ; National parks ; Neural networks ; Original Research ; Pasture ; Protection and preservation ; Range ecology ; Range management ; Rangelands ; regression analysis ; Sensitivity analysis ; Strategic management ; Support vector machines ; Sustainable development ; Tourism ; tourists ; Travel industry ; user interface ; Vegetation</subject><ispartof>Biodiversity and conservation, 2024-03, Vol.33 (3), p.1051-1078</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c342t-892bf73a22a15dbaf626ce2cafcdf160ed48dad7669223b6b2a0bcbff77d4c6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Jahani, Ali</creatorcontrib><creatorcontrib>Saffariha, Maryam</creatorcontrib><creatorcontrib>Nezhad, Zeinab Hosein</creatorcontrib><title>Predicting the anthropogenic impacts on vegetation diversity of protected rangelands: an application of artificial intelligence</title><title>Biodiversity and conservation</title><addtitle>Biodivers Conserv</addtitle><description>This study delves into anthropogenic impacts on vegetation diversity within mountainous protected rangelands, exploring habitat weakening and biodiversity loss. Employing artificial intelligence, specifically multilayer perceptron (MLP), radial basis neural network (RBFNN), and support vector regression (SVR), we predict vegetation diversity responses to ecological conditions, livestock grazing, and tourism. Assessing 305 sample plots with 21 variables, the MLP model demonstrated superior accuracy (R 2  = 0.93 in training, R 2  = 0.81 in the test dataset) compared to RBFNN and SVR. Sensitivity analyses highlighted anthropogenic factors like distance to tourist destinations, roads, pastures, and animal husbandries as significant influencers of vegetation diversity in mountainous protected rangelands. To enhance practical application, a user-friendly graphical interface was developed, enabling rangeland managers to utilize the MLP model. This tool facilitates estimation of livestock grazing and tourism impacts on vegetation diversity, empowering informed decision-making for the preservation and sustainability of mountainous protected rangeland ecosystems.</description><subject>Anthropogenic factors</subject><subject>Artificial intelligence</subject><subject>Biodiversity</subject><subject>Biodiversity loss</subject><subject>Biological diversity</subject><subject>Biomedical and Life Sciences</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Conservation Biology/Ecology</subject><subject>data collection</subject><subject>Decision making</subject><subject>Ecological conditions</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Grazing</subject><subject>Habitats</subject><subject>Human influences</subject><subject>Impact prediction</subject><subject>Life Sciences</subject><subject>Livestock</subject><subject>Livestock grazing</subject><subject>Model accuracy</subject><subject>Mountains</subject><subject>Multilayer perceptrons</subject><subject>National parks</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Pasture</subject><subject>Protection and preservation</subject><subject>Range ecology</subject><subject>Range management</subject><subject>Rangelands</subject><subject>regression analysis</subject><subject>Sensitivity analysis</subject><subject>Strategic management</subject><subject>Support vector machines</subject><subject>Sustainable development</subject><subject>Tourism</subject><subject>tourists</subject><subject>Travel industry</subject><subject>user interface</subject><subject>Vegetation</subject><issn>0960-3115</issn><issn>1572-9710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rHSEUhqW00NskfyAroZtuJvVjRme6C6FfEGgX7VrO6HFimKtT9Qay6l-P7RQKXRQRRZ5HX3wJueTsijOm3xbOBsk7Jvo29Sg7-Ywc-KBFN2nOnpMDmxTrJOfDS_KqlHvWpEHxA_n5NaMLtoa40HqHFGK9y2lLC8ZgaThuYGuhKdIHXLBCDW3rwgPmEuojTZ5uOVW0FR3NEBdcIbryrl1DYdvWYHejcZBr8MEGWGmIFdc1tCcsnpMXHtaCF3_WM_L9w_tvN5-62y8fP99c33ZW9qJ24yRmryUIAXxwM3gllEVhwVvnuWLo-tGB00pNQshZzQLYbGfvtXa9VV6ekTf7vS3vjxOWao6h2BYDIqZTMZIPUgkx8b6hr_9B79Mpx5bOiGlQjDMtWaOudmqBFU2IPtUMtg2Hx2BTRB_a-bUelRh6KccmiF2wOZWS0ZsthyPkR8OZ-VWi2Us0rUTzu0QjmyR3qTS4fW_-m-U_1hNi66KZ</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Jahani, Ali</creator><creator>Saffariha, Maryam</creator><creator>Nezhad, Zeinab Hosein</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>LK8</scope><scope>M0K</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202403</creationdate><title>Predicting the anthropogenic impacts on vegetation diversity of protected rangelands: an application of artificial intelligence</title><author>Jahani, Ali ; Saffariha, Maryam ; Nezhad, Zeinab Hosein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-892bf73a22a15dbaf626ce2cafcdf160ed48dad7669223b6b2a0bcbff77d4c6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anthropogenic factors</topic><topic>Artificial intelligence</topic><topic>Biodiversity</topic><topic>Biodiversity loss</topic><topic>Biological diversity</topic><topic>Biomedical and Life Sciences</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Conservation Biology/Ecology</topic><topic>data collection</topic><topic>Decision making</topic><topic>Ecological conditions</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Grazing</topic><topic>Habitats</topic><topic>Human influences</topic><topic>Impact prediction</topic><topic>Life Sciences</topic><topic>Livestock</topic><topic>Livestock grazing</topic><topic>Model accuracy</topic><topic>Mountains</topic><topic>Multilayer perceptrons</topic><topic>National parks</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Pasture</topic><topic>Protection and preservation</topic><topic>Range ecology</topic><topic>Range management</topic><topic>Rangelands</topic><topic>regression analysis</topic><topic>Sensitivity analysis</topic><topic>Strategic management</topic><topic>Support vector machines</topic><topic>Sustainable development</topic><topic>Tourism</topic><topic>tourists</topic><topic>Travel industry</topic><topic>user interface</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahani, Ali</creatorcontrib><creatorcontrib>Saffariha, Maryam</creatorcontrib><creatorcontrib>Nezhad, Zeinab Hosein</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biodiversity and conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahani, Ali</au><au>Saffariha, Maryam</au><au>Nezhad, Zeinab Hosein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the anthropogenic impacts on vegetation diversity of protected rangelands: an application of artificial intelligence</atitle><jtitle>Biodiversity and conservation</jtitle><stitle>Biodivers Conserv</stitle><date>2024-03</date><risdate>2024</risdate><volume>33</volume><issue>3</issue><spage>1051</spage><epage>1078</epage><pages>1051-1078</pages><issn>0960-3115</issn><eissn>1572-9710</eissn><abstract>This study delves into anthropogenic impacts on vegetation diversity within mountainous protected rangelands, exploring habitat weakening and biodiversity loss. Employing artificial intelligence, specifically multilayer perceptron (MLP), radial basis neural network (RBFNN), and support vector regression (SVR), we predict vegetation diversity responses to ecological conditions, livestock grazing, and tourism. Assessing 305 sample plots with 21 variables, the MLP model demonstrated superior accuracy (R 2  = 0.93 in training, R 2  = 0.81 in the test dataset) compared to RBFNN and SVR. Sensitivity analyses highlighted anthropogenic factors like distance to tourist destinations, roads, pastures, and animal husbandries as significant influencers of vegetation diversity in mountainous protected rangelands. To enhance practical application, a user-friendly graphical interface was developed, enabling rangeland managers to utilize the MLP model. This tool facilitates estimation of livestock grazing and tourism impacts on vegetation diversity, empowering informed decision-making for the preservation and sustainability of mountainous protected rangeland ecosystems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10531-024-02783-3</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3115
ispartof Biodiversity and conservation, 2024-03, Vol.33 (3), p.1051-1078
issn 0960-3115
1572-9710
language eng
recordid cdi_proquest_journals_2956010730
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Anthropogenic factors
Artificial intelligence
Biodiversity
Biodiversity loss
Biological diversity
Biomedical and Life Sciences
Climate Change/Climate Change Impacts
Conservation Biology/Ecology
data collection
Decision making
Ecological conditions
Ecology
Ecosystems
Grazing
Habitats
Human influences
Impact prediction
Life Sciences
Livestock
Livestock grazing
Model accuracy
Mountains
Multilayer perceptrons
National parks
Neural networks
Original Research
Pasture
Protection and preservation
Range ecology
Range management
Rangelands
regression analysis
Sensitivity analysis
Strategic management
Support vector machines
Sustainable development
Tourism
tourists
Travel industry
user interface
Vegetation
title Predicting the anthropogenic impacts on vegetation diversity of protected rangelands: an application of artificial intelligence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-09T03%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20anthropogenic%20impacts%20on%20vegetation%20diversity%20of%20protected%20rangelands:%20an%20application%20of%20artificial%20intelligence&rft.jtitle=Biodiversity%20and%20conservation&rft.au=Jahani,%20Ali&rft.date=2024-03&rft.volume=33&rft.issue=3&rft.spage=1051&rft.epage=1078&rft.pages=1051-1078&rft.issn=0960-3115&rft.eissn=1572-9710&rft_id=info:doi/10.1007/s10531-024-02783-3&rft_dat=%3Cgale_proqu%3EA786254338%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-892bf73a22a15dbaf626ce2cafcdf160ed48dad7669223b6b2a0bcbff77d4c6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956010730&rft_id=info:pmid/&rft_galeid=A786254338&rfr_iscdi=true