Loading…

Asymptotic expected T$T$‐functionals of random polytopes with applications to Lp$L_p$ surface areas

An asymptotic formula is proved for the expected T$T$‐functional of the convex hull of independent and identically distributed random points sampled from the Euclidean unit sphere in Rn$\mathbb {R}^n$ according to an arbitrary positive continuous density. As an application, the approximation of the...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2024-03, Vol.297 (3), p.914-931
Main Authors: Hoehner, Steven, Li, Ben, Roysdon, Michael, Thäle, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1175-2e09c235e669b5b04cf2dc3602bb3c1a078930847ef5c596b854b3b76f63d73e3
container_end_page 931
container_issue 3
container_start_page 914
container_title Mathematische Nachrichten
container_volume 297
creator Hoehner, Steven
Li, Ben
Roysdon, Michael
Thäle, Christoph
description An asymptotic formula is proved for the expected T$T$‐functional of the convex hull of independent and identically distributed random points sampled from the Euclidean unit sphere in Rn$\mathbb {R}^n$ according to an arbitrary positive continuous density. As an application, the approximation of the sphere by random polytopes in terms of Lp$L_p$ surface area differences is discussed.
doi_str_mv 10.1002/mana.202200495
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2956059708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956059708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1175-2e09c235e669b5b04cf2dc3602bb3c1a078930847ef5c596b854b3b76f63d73e3</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMoOI5uXQfstuNt2qTNsgz-QdXNCO5CmqbYoW1i0kG78xF8Rp_ElhFdurqbcz64B6HzCFYRALnsZC9XBAgBSDg9QIuIEhISFrFDtJgAGtIseT5GJ95vAYDzlC2Qzv3Y2cEMjcL63Wo16Apvgk3w9fFZ73o1NKaXrcemxk72lemwNe04GKs9fmuGFyytbRslZ87jweDCBoWwAfY7V0ulsXRa-lN0VE8r-uznLtHT9dVmfRsWjzd367wIVRSlNCQauCIx1YzxkpaQqJpUKmZAyjJWkYQ04zFkSaprqihnZUaTMi5TVrO4SmMdL9HFftc687rTfhBbs3PzA4JwyoDyFLKJWu0p5Yz3TtfCuqaTbhQRiDmlmFOK35STwPfCW9Pq8R9a3OcP-Z_7DdKKeR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956059708</pqid></control><display><type>article</type><title>Asymptotic expected T$T$‐functionals of random polytopes with applications to Lp$L_p$ surface areas</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hoehner, Steven ; Li, Ben ; Roysdon, Michael ; Thäle, Christoph</creator><creatorcontrib>Hoehner, Steven ; Li, Ben ; Roysdon, Michael ; Thäle, Christoph</creatorcontrib><description>An asymptotic formula is proved for the expected T$T$‐functional of the convex hull of independent and identically distributed random points sampled from the Euclidean unit sphere in Rn$\mathbb {R}^n$ according to an arbitrary positive continuous density. As an application, the approximation of the sphere by random polytopes in terms of Lp$L_p$ surface area differences is discussed.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.202200495</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Asymptotic properties ; Convexity ; Lp$L_p$ surface area ; Polytopes ; random polytope ; stochastic geometry ; Surface area ; T$T$‐functional</subject><ispartof>Mathematische Nachrichten, 2024-03, Vol.297 (3), p.914-931</ispartof><rights>2023 The Authors. published by Wiley‐VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1175-2e09c235e669b5b04cf2dc3602bb3c1a078930847ef5c596b854b3b76f63d73e3</cites><orcidid>0000-0002-5998-0934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hoehner, Steven</creatorcontrib><creatorcontrib>Li, Ben</creatorcontrib><creatorcontrib>Roysdon, Michael</creatorcontrib><creatorcontrib>Thäle, Christoph</creatorcontrib><title>Asymptotic expected T$T$‐functionals of random polytopes with applications to Lp$L_p$ surface areas</title><title>Mathematische Nachrichten</title><description>An asymptotic formula is proved for the expected T$T$‐functional of the convex hull of independent and identically distributed random points sampled from the Euclidean unit sphere in Rn$\mathbb {R}^n$ according to an arbitrary positive continuous density. As an application, the approximation of the sphere by random polytopes in terms of Lp$L_p$ surface area differences is discussed.</description><subject>Asymptotic properties</subject><subject>Convexity</subject><subject>Lp$L_p$ surface area</subject><subject>Polytopes</subject><subject>random polytope</subject><subject>stochastic geometry</subject><subject>Surface area</subject><subject>T$T$‐functional</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1KxDAURoMoOI5uXQfstuNt2qTNsgz-QdXNCO5CmqbYoW1i0kG78xF8Rp_ElhFdurqbcz64B6HzCFYRALnsZC9XBAgBSDg9QIuIEhISFrFDtJgAGtIseT5GJ95vAYDzlC2Qzv3Y2cEMjcL63Wo16Apvgk3w9fFZ73o1NKaXrcemxk72lemwNe04GKs9fmuGFyytbRslZ87jweDCBoWwAfY7V0ulsXRa-lN0VE8r-uznLtHT9dVmfRsWjzd367wIVRSlNCQauCIx1YzxkpaQqJpUKmZAyjJWkYQ04zFkSaprqihnZUaTMi5TVrO4SmMdL9HFftc687rTfhBbs3PzA4JwyoDyFLKJWu0p5Yz3TtfCuqaTbhQRiDmlmFOK35STwPfCW9Pq8R9a3OcP-Z_7DdKKeR8</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Hoehner, Steven</creator><creator>Li, Ben</creator><creator>Roysdon, Michael</creator><creator>Thäle, Christoph</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5998-0934</orcidid></search><sort><creationdate>202403</creationdate><title>Asymptotic expected T$T$‐functionals of random polytopes with applications to Lp$L_p$ surface areas</title><author>Hoehner, Steven ; Li, Ben ; Roysdon, Michael ; Thäle, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1175-2e09c235e669b5b04cf2dc3602bb3c1a078930847ef5c596b854b3b76f63d73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Convexity</topic><topic>Lp$L_p$ surface area</topic><topic>Polytopes</topic><topic>random polytope</topic><topic>stochastic geometry</topic><topic>Surface area</topic><topic>T$T$‐functional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoehner, Steven</creatorcontrib><creatorcontrib>Li, Ben</creatorcontrib><creatorcontrib>Roysdon, Michael</creatorcontrib><creatorcontrib>Thäle, Christoph</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoehner, Steven</au><au>Li, Ben</au><au>Roysdon, Michael</au><au>Thäle, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic expected T$T$‐functionals of random polytopes with applications to Lp$L_p$ surface areas</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2024-03</date><risdate>2024</risdate><volume>297</volume><issue>3</issue><spage>914</spage><epage>931</epage><pages>914-931</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>An asymptotic formula is proved for the expected T$T$‐functional of the convex hull of independent and identically distributed random points sampled from the Euclidean unit sphere in Rn$\mathbb {R}^n$ according to an arbitrary positive continuous density. As an application, the approximation of the sphere by random polytopes in terms of Lp$L_p$ surface area differences is discussed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.202200495</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5998-0934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2024-03, Vol.297 (3), p.914-931
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_2956059708
source Wiley-Blackwell Read & Publish Collection
subjects Asymptotic properties
Convexity
Lp$L_p$ surface area
Polytopes
random polytope
stochastic geometry
Surface area
T$T$‐functional
title Asymptotic expected T$T$‐functionals of random polytopes with applications to Lp$L_p$ surface areas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20expected%20T$T$%E2%80%90functionals%20of%20random%20polytopes%20with%20applications%20to%20Lp$L_p$%20surface%20areas&rft.jtitle=Mathematische%20Nachrichten&rft.au=Hoehner,%20Steven&rft.date=2024-03&rft.volume=297&rft.issue=3&rft.spage=914&rft.epage=931&rft.pages=914-931&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.202200495&rft_dat=%3Cproquest_cross%3E2956059708%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1175-2e09c235e669b5b04cf2dc3602bb3c1a078930847ef5c596b854b3b76f63d73e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956059708&rft_id=info:pmid/&rfr_iscdi=true