Loading…
Authorship Style Transfer with Policy Optimization
Authorship style transfer aims to rewrite a given text into a specified target while preserving the original meaning in the source. Existing approaches rely on the availability of a large number of target style exemplars for model training. However, these overlook cases where a limited number of tar...
Saved in:
Published in: | arXiv.org 2024-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Authorship style transfer aims to rewrite a given text into a specified target while preserving the original meaning in the source. Existing approaches rely on the availability of a large number of target style exemplars for model training. However, these overlook cases where a limited number of target style examples are available. The development of parameter-efficient transfer learning techniques and policy optimization (PO) approaches suggest lightweight PO is a feasible approach to low-resource style transfer. In this work, we propose a simple two-stage tune-and-optimize technique for low-resource textual style transfer. We apply our technique to authorship transfer as well as a larger-data native language style task and in both cases find it outperforms state-of-the-art baseline models. |
---|---|
ISSN: | 2331-8422 |