Loading…

Randomized Principal Component Analysis for Hyperspectral Image Classification

The high-dimensional feature space of the hyperspectral imagery poses major challenges to the processing and analysis of the hyperspectral data sets. In such a case, dimensionality reduction is necessary to decrease the computational complexity. The random projections open up new ways of dimensional...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-06
Main Author: Ustuner, Mustafa
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The high-dimensional feature space of the hyperspectral imagery poses major challenges to the processing and analysis of the hyperspectral data sets. In such a case, dimensionality reduction is necessary to decrease the computational complexity. The random projections open up new ways of dimensionality reduction, especially for large data sets. In this paper, the principal component analysis (PCA) and randomized principal component analysis (R-PCA) for the classification of hyperspectral images using support vector machines (SVM) and light gradient boosting machines (LightGBM) have been investigated. In this experimental research, the number of features was reduced to 20 and 30 for classification of two hyperspectral datasets (Indian Pines and Pavia University). The experimental results demonstrated that PCA outperformed R-PCA for SVM for both datasets, but received close accuracy values for LightGBM. The highest classification accuracies were obtained as 0.9925 and 0.9639 by LightGBM with original features for the Pavia University and Indian Pines, respectively.
ISSN:2331-8422
DOI:10.48550/arxiv.2403.09117