Loading…
Photoinduced Precise Synthesis of Diatomic Ir1Pd1‐In2O3 for CO2 Hydrogenation to Methanol via Angstrom‐Scale‐Distance Dependent Synergistic Catalysis
The atomically dispersed metal catalysts with full atomic utilization and well‐defined site structure hold great promise for various catalytic reactions. However, the single metallic site limits the comprehensive reaction performance in most reactions. Here, we demonstrated a photo‐induced neighbour...
Saved in:
Published in: | Angewandte Chemie International Edition 2024-03, Vol.63 (13), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The atomically dispersed metal catalysts with full atomic utilization and well‐defined site structure hold great promise for various catalytic reactions. However, the single metallic site limits the comprehensive reaction performance in most reactions. Here, we demonstrated a photo‐induced neighbour‐deposition strategy for the precise synthesis of diatomic Ir1Pd1 on In2O3 applied for CO2 hydrogenation to methanol. The proximity synergism between diatomic sites enabled a striking promotion in both CO2 conversion (10.5 %) and methanol selectivity (97 %) with good stability of 100 h run. It resulted in record‐breaking space‐time yield to methanol (187.1 gMeOH gmetal−1 hour−1). The promotional effect mainly originated from stronger CO2 adsorption on Ir site with assistance of H‐spillover from Pd site, thus leading to a lower energy barrier for *HCOO pathway. It was confirmed that this synergistic effect strongly depended on the dual‐site distance in an angstrom scale, which was attributed to weaker *H spillover and less electron transfer from Pd to Ir site as the Pd‐to‐Ir distance increased. The average dual‐site distance was evaluated by our firstly proposed photoelectric model. Thus, this study introduced a pioneering strategy to precisely synthesize homonuclear/heteronuclear diatomic catalysts for facilitating the desired reaction route via diatomic synergistic catalysis.
We develop a novel photo‐induced neighbour‐deposition strategy to precisely synthesize the heteronuclear dual‐atom Ir1Pd1‐In2O3(CP‐PD) catalyst. The strong synergistic effect in an angstrom scale endows adjacent diatomic Ir‐Pd sites with extraordinary catalytic performance for CO2 hydrogenation to methanol. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202401168 |