Loading…

Offline Multitask Representation Learning for Reinforcement Learning

We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation. We theoretically investigate offline multitask low-rank RL,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Haque Ishfaq, Nguyen-Tang, Thanh, Feng, Songtao, Arora, Raman, Wang, Mengdi, Yin, Ming, Precup, Doina
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Haque Ishfaq
Nguyen-Tang, Thanh
Feng, Songtao
Arora, Raman
Wang, Mengdi
Yin, Ming
Precup, Doina
description We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation. We theoretically investigate offline multitask low-rank RL, and propose a new algorithm called MORL for offline multitask representation learning. Furthermore, we examine downstream RL in reward-free, offline and online scenarios, where a new task is introduced to the agent that shares the same representation as the upstream offline tasks. Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2968636271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2968636271</sourcerecordid><originalsourceid>FETCH-proquest_journals_29686362713</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC-1Nm9bZHxwUQdxLkBtJjTc1Sd_fDOLsdIbvzFgGQlRFVwMsWB7CUJYlyBaaRmRsd9HaGkJ-nmw0UYUnv-LoMSBFFY0jfkLlydCDa-eTGUq94yv5j1ZsrpUNmH-7ZOvD_rY9FqN37wlD7Ac3eUrUw0Z2UkhoK_Hf9QGLYjs5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2968636271</pqid></control><display><type>article</type><title>Offline Multitask Representation Learning for Reinforcement Learning</title><source>Publicly Available Content (ProQuest)</source><creator>Haque Ishfaq ; Nguyen-Tang, Thanh ; Feng, Songtao ; Arora, Raman ; Wang, Mengdi ; Yin, Ming ; Precup, Doina</creator><creatorcontrib>Haque Ishfaq ; Nguyen-Tang, Thanh ; Feng, Songtao ; Arora, Raman ; Wang, Mengdi ; Yin, Ming ; Precup, Doina</creatorcontrib><description>We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation. We theoretically investigate offline multitask low-rank RL, and propose a new algorithm called MORL for offline multitask representation learning. Furthermore, we examine downstream RL in reward-free, offline and online scenarios, where a new task is introduced to the agent that shares the same representation as the upstream offline tasks. Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Representations ; Upstream</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2968636271?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Haque Ishfaq</creatorcontrib><creatorcontrib>Nguyen-Tang, Thanh</creatorcontrib><creatorcontrib>Feng, Songtao</creatorcontrib><creatorcontrib>Arora, Raman</creatorcontrib><creatorcontrib>Wang, Mengdi</creatorcontrib><creatorcontrib>Yin, Ming</creatorcontrib><creatorcontrib>Precup, Doina</creatorcontrib><title>Offline Multitask Representation Learning for Reinforcement Learning</title><title>arXiv.org</title><description>We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation. We theoretically investigate offline multitask low-rank RL, and propose a new algorithm called MORL for offline multitask representation learning. Furthermore, we examine downstream RL in reward-free, offline and online scenarios, where a new task is introduced to the agent that shares the same representation as the upstream offline tasks. Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.</description><subject>Algorithms</subject><subject>Representations</subject><subject>Upstream</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC-1Nm9bZHxwUQdxLkBtJjTc1Sd_fDOLsdIbvzFgGQlRFVwMsWB7CUJYlyBaaRmRsd9HaGkJ-nmw0UYUnv-LoMSBFFY0jfkLlydCDa-eTGUq94yv5j1ZsrpUNmH-7ZOvD_rY9FqN37wlD7Ac3eUrUw0Z2UkhoK_Hf9QGLYjs5</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Haque Ishfaq</creator><creator>Nguyen-Tang, Thanh</creator><creator>Feng, Songtao</creator><creator>Arora, Raman</creator><creator>Wang, Mengdi</creator><creator>Yin, Ming</creator><creator>Precup, Doina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>Offline Multitask Representation Learning for Reinforcement Learning</title><author>Haque Ishfaq ; Nguyen-Tang, Thanh ; Feng, Songtao ; Arora, Raman ; Wang, Mengdi ; Yin, Ming ; Precup, Doina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29686362713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Representations</topic><topic>Upstream</topic><toplevel>online_resources</toplevel><creatorcontrib>Haque Ishfaq</creatorcontrib><creatorcontrib>Nguyen-Tang, Thanh</creatorcontrib><creatorcontrib>Feng, Songtao</creatorcontrib><creatorcontrib>Arora, Raman</creatorcontrib><creatorcontrib>Wang, Mengdi</creatorcontrib><creatorcontrib>Yin, Ming</creatorcontrib><creatorcontrib>Precup, Doina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haque Ishfaq</au><au>Nguyen-Tang, Thanh</au><au>Feng, Songtao</au><au>Arora, Raman</au><au>Wang, Mengdi</au><au>Yin, Ming</au><au>Precup, Doina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Offline Multitask Representation Learning for Reinforcement Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study offline multitask representation learning in reinforcement learning (RL), where a learner is provided with an offline dataset from different tasks that share a common representation and is asked to learn the shared representation. We theoretically investigate offline multitask low-rank RL, and propose a new algorithm called MORL for offline multitask representation learning. Furthermore, we examine downstream RL in reward-free, offline and online scenarios, where a new task is introduced to the agent that shares the same representation as the upstream offline tasks. Our theoretical results demonstrate the benefits of using the learned representation from the upstream offline task instead of directly learning the representation of the low-rank model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2968636271
source Publicly Available Content (ProQuest)
subjects Algorithms
Representations
Upstream
title Offline Multitask Representation Learning for Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Offline%20Multitask%20Representation%20Learning%20for%20Reinforcement%20Learning&rft.jtitle=arXiv.org&rft.au=Haque%20Ishfaq&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2968636271%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29686362713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2968636271&rft_id=info:pmid/&rfr_iscdi=true