Loading…

Approximation of extracted features enabling 3D design tuning for reproducing the mechanical behaviour of biological soft tissues

This article describes a new method, inspired by machine learning, to mimic the mechanical behaviour of target biological soft tissues with 3D printed materials. The principle is to optimise the structure of a 3D printed composite consisting of a geometrically tunable fibre embedded in a soft matrix...

Full description

Saved in:
Bibliographic Details
Published in:Soft matter 2024-03, Vol.2 (12), p.273-2738
Main Authors: Serantoni, Vincent, Rouby, Corinne, Heller, Ugo, Boisson, Jean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article describes a new method, inspired by machine learning, to mimic the mechanical behaviour of target biological soft tissues with 3D printed materials. The principle is to optimise the structure of a 3D printed composite consisting of a geometrically tunable fibre embedded in a soft matrix. Physiological features are extracted from experimental stress-strain curves of several biological soft tissues. Then, using a cubic Bézier curve as the composite inner fibre, we optimised its geometric parameters, amplitude and height, to generate a specimen that exhibits a stress-strain curve in accordance with the extracted features of tensile tests. From this first phase, we created a database of specimen geometries that can be used to reproduce a wide variety of biological soft tissues. We applied this process to two soft tissues with very different behaviours: the mandibular periosteum and the calvarial periosteum. The results show that our method can successfully reproduce the mechanical behaviour of these tissues. This highlights the versatility of this approach and demonstrates that it can be extended to mimic various biological soft tissues. A machine learning inspired method to mimic the mechanical behaviour of biological soft tissues is described. The tuned composite, based on Bézier curves, gives good results in the experimental reproduction of mandibular and calvarial periosteum.
ISSN:1744-683X
1744-6848
DOI:10.1039/d3sm01159c