Loading…

Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol

Stable polypyrrole (PPy)-based hydrogels as soft conducting materials are ideal in wearable electronics and elastic robotics. The development of high-performance PPy-based hydrogels is greatly desired due to the poor mechanical properties of PPy hydrogel. Here, multifunctional stable conducting hydr...

Full description

Saved in:
Bibliographic Details
Published in:Polymer bulletin (Berlin, Germany) Germany), 2024-04, Vol.81 (5), p.4107-4121
Main Authors: Zhu, Fen, She, Xiao, Huang, Huabo, Zhang, Zhanhui, Ji, Jiayou, Li, Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-bb48cd3084dcd1b10872198846841f38ebb7fb6cc6413b6a79e40c2227b9dac83
cites cdi_FETCH-LOGICAL-c347t-bb48cd3084dcd1b10872198846841f38ebb7fb6cc6413b6a79e40c2227b9dac83
container_end_page 4121
container_issue 5
container_start_page 4107
container_title Polymer bulletin (Berlin, Germany)
container_volume 81
creator Zhu, Fen
She, Xiao
Huang, Huabo
Zhang, Zhanhui
Ji, Jiayou
Li, Liang
description Stable polypyrrole (PPy)-based hydrogels as soft conducting materials are ideal in wearable electronics and elastic robotics. The development of high-performance PPy-based hydrogels is greatly desired due to the poor mechanical properties of PPy hydrogel. Here, multifunctional stable conducting hydrogels are fabricated by immersing the preprepared brittle PPy hydrogel into polyvinyl alcohol (PVA) solution followed by freeze–thaw cycles. The extensive hydrogen bonding between PPy and PVA and the entangled PVA chains further support the backbone structure of the interconnected PPy network, improving the mechanical performance of the hydrogel. PPy/PVA hydrogel exhibits attractive mechanical property with a compression strength of 70 kPa, satisfactory electrical conductivity (10 S m −1 ), good processability, and self-healing features. PPy/PVA/100 still retained a recovery rate of more than 90% even after 1000 cycles of 30% compression strain. Furthermore, the as-prepared hydrogel is applied to show high-quality electrochemical behavior of 120 F/g subjected to repeated compression and an electrically controlled release of fluorescein sodium with 0.70 μg/mg at − 1 V for 12 h. This facile method supplies a promising strategy to fabricate soft materials with integrated electrical and mechanical properties for the potential applications in wearable devices and flexible energy electronics.
doi_str_mv 10.1007/s00289-023-04903-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2968914367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2968914367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-bb48cd3084dcd1b10872198846841f38ebb7fb6cc6413b6a79e40c2227b9dac83</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_wNOC5-jko5vkKMWqUBBBzyHJZtst6WZNtsL-e7eu4E1PwwzPO8w8CF0TuCUA4i4DUKkwUIaBK2B4cYJmhLMSU87VKZoBEYBBMnWOLnLewdiXJZmh15WxqXGmb2JbxLrYH0Lf1IfWHQcmFF0MQzekFIMvtkOV4saHwrdb0zpfFXb4Bj6bdgiFCS5uY7hEZ7UJ2V_91Dl6Xz28LZ_w-uXxeXm_xo5x0WNruXQVA8krVxFLQApKlJS8lJzUTHprRW1L50pOmC2NUJ6Do5QKqyrjJJujm2lvl-LHwede7-IhjTdnTVUp1fF78R8lKIUFHyk6US7FnJOvdZeavUmDJqCPgvUkWI-C9bdgvRhDbArlEW43Pv2u_iP1BUY9fmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2968722054</pqid></control><display><type>article</type><title>Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol</title><source>Springer Link</source><creator>Zhu, Fen ; She, Xiao ; Huang, Huabo ; Zhang, Zhanhui ; Ji, Jiayou ; Li, Liang</creator><creatorcontrib>Zhu, Fen ; She, Xiao ; Huang, Huabo ; Zhang, Zhanhui ; Ji, Jiayou ; Li, Liang</creatorcontrib><description>Stable polypyrrole (PPy)-based hydrogels as soft conducting materials are ideal in wearable electronics and elastic robotics. The development of high-performance PPy-based hydrogels is greatly desired due to the poor mechanical properties of PPy hydrogel. Here, multifunctional stable conducting hydrogels are fabricated by immersing the preprepared brittle PPy hydrogel into polyvinyl alcohol (PVA) solution followed by freeze–thaw cycles. The extensive hydrogen bonding between PPy and PVA and the entangled PVA chains further support the backbone structure of the interconnected PPy network, improving the mechanical performance of the hydrogel. PPy/PVA hydrogel exhibits attractive mechanical property with a compression strength of 70 kPa, satisfactory electrical conductivity (10 S m −1 ), good processability, and self-healing features. PPy/PVA/100 still retained a recovery rate of more than 90% even after 1000 cycles of 30% compression strain. Furthermore, the as-prepared hydrogel is applied to show high-quality electrochemical behavior of 120 F/g subjected to repeated compression and an electrically controlled release of fluorescein sodium with 0.70 μg/mg at − 1 V for 12 h. This facile method supplies a promising strategy to fabricate soft materials with integrated electrical and mechanical properties for the potential applications in wearable devices and flexible energy electronics.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-023-04903-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Automation ; Biosensors ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Compressive strength ; Controlled release ; Electrical resistivity ; Electrochemical analysis ; Electrodes ; Electronics ; Fourier transforms ; Freeze thaw cycles ; Graphene ; Hydrogels ; Hydrogen bonding ; Hydrogen embrittlement ; Light emitting diodes ; Manufacturing engineering ; Mechanical properties ; Morphology ; Nanoparticles ; Organic Chemistry ; Original Paper ; Oxidation ; Physical Chemistry ; Polymer Sciences ; Polymerization ; Polymers ; Polypyrroles ; Polyvinyl alcohol ; Robotics ; Scanning electron microscopy ; Sodium ; Soft and Granular Matter ; Surfactants ; Wearable technology</subject><ispartof>Polymer bulletin (Berlin, Germany), 2024-04, Vol.81 (5), p.4107-4121</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-bb48cd3084dcd1b10872198846841f38ebb7fb6cc6413b6a79e40c2227b9dac83</citedby><cites>FETCH-LOGICAL-c347t-bb48cd3084dcd1b10872198846841f38ebb7fb6cc6413b6a79e40c2227b9dac83</cites><orcidid>0000-0003-4601-8890</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Fen</creatorcontrib><creatorcontrib>She, Xiao</creatorcontrib><creatorcontrib>Huang, Huabo</creatorcontrib><creatorcontrib>Zhang, Zhanhui</creatorcontrib><creatorcontrib>Ji, Jiayou</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><title>Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>Stable polypyrrole (PPy)-based hydrogels as soft conducting materials are ideal in wearable electronics and elastic robotics. The development of high-performance PPy-based hydrogels is greatly desired due to the poor mechanical properties of PPy hydrogel. Here, multifunctional stable conducting hydrogels are fabricated by immersing the preprepared brittle PPy hydrogel into polyvinyl alcohol (PVA) solution followed by freeze–thaw cycles. The extensive hydrogen bonding between PPy and PVA and the entangled PVA chains further support the backbone structure of the interconnected PPy network, improving the mechanical performance of the hydrogel. PPy/PVA hydrogel exhibits attractive mechanical property with a compression strength of 70 kPa, satisfactory electrical conductivity (10 S m −1 ), good processability, and self-healing features. PPy/PVA/100 still retained a recovery rate of more than 90% even after 1000 cycles of 30% compression strain. Furthermore, the as-prepared hydrogel is applied to show high-quality electrochemical behavior of 120 F/g subjected to repeated compression and an electrically controlled release of fluorescein sodium with 0.70 μg/mg at − 1 V for 12 h. This facile method supplies a promising strategy to fabricate soft materials with integrated electrical and mechanical properties for the potential applications in wearable devices and flexible energy electronics.</description><subject>Automation</subject><subject>Biosensors</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Compressive strength</subject><subject>Controlled release</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Fourier transforms</subject><subject>Freeze thaw cycles</subject><subject>Graphene</subject><subject>Hydrogels</subject><subject>Hydrogen bonding</subject><subject>Hydrogen embrittlement</subject><subject>Light emitting diodes</subject><subject>Manufacturing engineering</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polypyrroles</subject><subject>Polyvinyl alcohol</subject><subject>Robotics</subject><subject>Scanning electron microscopy</subject><subject>Sodium</subject><subject>Soft and Granular Matter</subject><subject>Surfactants</subject><subject>Wearable technology</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_wNOC5-jko5vkKMWqUBBBzyHJZtst6WZNtsL-e7eu4E1PwwzPO8w8CF0TuCUA4i4DUKkwUIaBK2B4cYJmhLMSU87VKZoBEYBBMnWOLnLewdiXJZmh15WxqXGmb2JbxLrYH0Lf1IfWHQcmFF0MQzekFIMvtkOV4saHwrdb0zpfFXb4Bj6bdgiFCS5uY7hEZ7UJ2V_91Dl6Xz28LZ_w-uXxeXm_xo5x0WNruXQVA8krVxFLQApKlJS8lJzUTHprRW1L50pOmC2NUJ6Do5QKqyrjJJujm2lvl-LHwede7-IhjTdnTVUp1fF78R8lKIUFHyk6US7FnJOvdZeavUmDJqCPgvUkWI-C9bdgvRhDbArlEW43Pv2u_iP1BUY9fmE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhu, Fen</creator><creator>She, Xiao</creator><creator>Huang, Huabo</creator><creator>Zhang, Zhanhui</creator><creator>Ji, Jiayou</creator><creator>Li, Liang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4601-8890</orcidid></search><sort><creationdate>20240401</creationdate><title>Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol</title><author>Zhu, Fen ; She, Xiao ; Huang, Huabo ; Zhang, Zhanhui ; Ji, Jiayou ; Li, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-bb48cd3084dcd1b10872198846841f38ebb7fb6cc6413b6a79e40c2227b9dac83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Biosensors</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Compressive strength</topic><topic>Controlled release</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Fourier transforms</topic><topic>Freeze thaw cycles</topic><topic>Graphene</topic><topic>Hydrogels</topic><topic>Hydrogen bonding</topic><topic>Hydrogen embrittlement</topic><topic>Light emitting diodes</topic><topic>Manufacturing engineering</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polypyrroles</topic><topic>Polyvinyl alcohol</topic><topic>Robotics</topic><topic>Scanning electron microscopy</topic><topic>Sodium</topic><topic>Soft and Granular Matter</topic><topic>Surfactants</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Fen</creatorcontrib><creatorcontrib>She, Xiao</creatorcontrib><creatorcontrib>Huang, Huabo</creatorcontrib><creatorcontrib>Zhang, Zhanhui</creatorcontrib><creatorcontrib>Ji, Jiayou</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Fen</au><au>She, Xiao</au><au>Huang, Huabo</au><au>Zhang, Zhanhui</au><au>Ji, Jiayou</au><au>Li, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>81</volume><issue>5</issue><spage>4107</spage><epage>4121</epage><pages>4107-4121</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>Stable polypyrrole (PPy)-based hydrogels as soft conducting materials are ideal in wearable electronics and elastic robotics. The development of high-performance PPy-based hydrogels is greatly desired due to the poor mechanical properties of PPy hydrogel. Here, multifunctional stable conducting hydrogels are fabricated by immersing the preprepared brittle PPy hydrogel into polyvinyl alcohol (PVA) solution followed by freeze–thaw cycles. The extensive hydrogen bonding between PPy and PVA and the entangled PVA chains further support the backbone structure of the interconnected PPy network, improving the mechanical performance of the hydrogel. PPy/PVA hydrogel exhibits attractive mechanical property with a compression strength of 70 kPa, satisfactory electrical conductivity (10 S m −1 ), good processability, and self-healing features. PPy/PVA/100 still retained a recovery rate of more than 90% even after 1000 cycles of 30% compression strain. Furthermore, the as-prepared hydrogel is applied to show high-quality electrochemical behavior of 120 F/g subjected to repeated compression and an electrically controlled release of fluorescein sodium with 0.70 μg/mg at − 1 V for 12 h. This facile method supplies a promising strategy to fabricate soft materials with integrated electrical and mechanical properties for the potential applications in wearable devices and flexible energy electronics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-023-04903-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4601-8890</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2024-04, Vol.81 (5), p.4107-4121
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_2968914367
source Springer Link
subjects Automation
Biosensors
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Compressive strength
Controlled release
Electrical resistivity
Electrochemical analysis
Electrodes
Electronics
Fourier transforms
Freeze thaw cycles
Graphene
Hydrogels
Hydrogen bonding
Hydrogen embrittlement
Light emitting diodes
Manufacturing engineering
Mechanical properties
Morphology
Nanoparticles
Organic Chemistry
Original Paper
Oxidation
Physical Chemistry
Polymer Sciences
Polymerization
Polymers
Polypyrroles
Polyvinyl alcohol
Robotics
Scanning electron microscopy
Sodium
Soft and Granular Matter
Surfactants
Wearable technology
title Fabrication of multifunctional polypyrrole hydrogel enhanced by polyvinyl alcohol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20multifunctional%20polypyrrole%20hydrogel%20enhanced%20by%20polyvinyl%20alcohol&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Zhu,%20Fen&rft.date=2024-04-01&rft.volume=81&rft.issue=5&rft.spage=4107&rft.epage=4121&rft.pages=4107-4121&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-023-04903-5&rft_dat=%3Cproquest_cross%3E2968914367%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-bb48cd3084dcd1b10872198846841f38ebb7fb6cc6413b6a79e40c2227b9dac83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2968722054&rft_id=info:pmid/&rfr_iscdi=true