Loading…

Exploring the Photocatalytic and Supercapacitive Potential of CuZr2S4 Thin Films: A Key to Cleaner and Safer Environments

In this research, an extensive exploration of bimetallic sulfide, CuZr2S4, is delved into. It involves the utilization of diethyldithiocarbamate as a sulfur source. The resulting thin film exhibits a well‐defined crystalline structure, characterized by an average crystallite size of 33 nm, indicatin...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. A, Applications and materials science Applications and materials science, 2024-03, Vol.221 (6), p.n/a
Main Authors: Gul, Mahwash Mahar, Ahmad, Khuram Shahzad, Thomas, Andrew Guy, Habila, Mohamed A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 6
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 221
creator Gul, Mahwash Mahar
Ahmad, Khuram Shahzad
Thomas, Andrew Guy
Habila, Mohamed A.
description In this research, an extensive exploration of bimetallic sulfide, CuZr2S4, is delved into. It involves the utilization of diethyldithiocarbamate as a sulfur source. The resulting thin film exhibits a well‐defined crystalline structure, characterized by an average crystallite size of 33 nm, indicating a commendable crystallinity of 87%. Bandgap energy through optical characterization is unveiled to be 2.5 eV, shedding light on the metal sulfide optical behavior. Furthermore, the elemental composition and chemical bonding of the thin film are elucidated using X‐ray photoelectron spectroscopy, revealing distinctive core‐level peaks associated with Cu 2p, Zr 3d, and S 2p. Electrochemical evaluations employing voltammetry measurements showcase remarkable specific capacitive performance, achieving an impressive value of 479 Fg−1. The thin film demonstrates exceptional stability over multiple cycles, underscoring its immense potential for diverse energy‐storage applications. A thorough assessment of the synthesized material's photocatalytic capabilities, namely its ability to degrade several types of environmental contaminants, is conducted. A bimetallic sulfide, CuZr2S4 thin film, is synthesized through physical vapor deposition. Thin film possesses remarkable properties resulting in exceptional performance. An impressive specific capacitance is exhibited portraying its energy‐storage potential. Moreover, the photocatalytic properties of the thin film also display its ability to degrade several environmental contaminants.
doi_str_mv 10.1002/pssa.202300986
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2969051676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969051676</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2876-5647e0eb7349f9048d3a7fbe5d5863e586f14f65624484762cb5a819be76d9753</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKdXzwHP1STNj8bbKJuKAwedFy8lbdMto0tqmk7739sx2eX73g8e3g8eAO4xesQIkae269QjQSRGSCb8AkxwwknEYywvzxmha3DTdTuEKKMCT8Aw_20b543dwLDVcLV1wZUqqGYIpoTKVjDrW-1L1arSBHMYERe0DUY10NUw7b88yShcb42FC9Psu2c4g-96gMHBtNHKan9qUfWY5vZgvLP7saC7BVe1ajp997-n4HMxX6ev0fLj5S2dLaMNSQSPGKdCI12ImMpaIppUsRJ1oVnFEh7rcdSY1pxxQmlCBSdlwVSCZaEFr6Rg8RQ8nHpb77573YV853pvx5c5kVwihrngIyVP1I9p9JC33uyVH3KM8qPb_Og2P7vNV1k2O1_xH78tb7k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969051676</pqid></control><display><type>article</type><title>Exploring the Photocatalytic and Supercapacitive Potential of CuZr2S4 Thin Films: A Key to Cleaner and Safer Environments</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Gul, Mahwash Mahar ; Ahmad, Khuram Shahzad ; Thomas, Andrew Guy ; Habila, Mohamed A.</creator><creatorcontrib>Gul, Mahwash Mahar ; Ahmad, Khuram Shahzad ; Thomas, Andrew Guy ; Habila, Mohamed A.</creatorcontrib><description>In this research, an extensive exploration of bimetallic sulfide, CuZr2S4, is delved into. It involves the utilization of diethyldithiocarbamate as a sulfur source. The resulting thin film exhibits a well‐defined crystalline structure, characterized by an average crystallite size of 33 nm, indicating a commendable crystallinity of 87%. Bandgap energy through optical characterization is unveiled to be 2.5 eV, shedding light on the metal sulfide optical behavior. Furthermore, the elemental composition and chemical bonding of the thin film are elucidated using X‐ray photoelectron spectroscopy, revealing distinctive core‐level peaks associated with Cu 2p, Zr 3d, and S 2p. Electrochemical evaluations employing voltammetry measurements showcase remarkable specific capacitive performance, achieving an impressive value of 479 Fg−1. The thin film demonstrates exceptional stability over multiple cycles, underscoring its immense potential for diverse energy‐storage applications. A thorough assessment of the synthesized material's photocatalytic capabilities, namely its ability to degrade several types of environmental contaminants, is conducted. A bimetallic sulfide, CuZr2S4 thin film, is synthesized through physical vapor deposition. Thin film possesses remarkable properties resulting in exceptional performance. An impressive specific capacitance is exhibited portraying its energy‐storage potential. Moreover, the photocatalytic properties of the thin film also display its ability to degrade several environmental contaminants.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300986</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bimetals ; Chemical bonds ; Chemical composition ; Contaminants ; Crystallites ; Electrochemical analysis ; Energy storage ; energy storages ; metal sulfides ; Optical properties ; photocatalysts ; Photoelectrons ; supercapacitors ; Thin films ; Zirconium</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-03, Vol.221 (6), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9171-8904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gul, Mahwash Mahar</creatorcontrib><creatorcontrib>Ahmad, Khuram Shahzad</creatorcontrib><creatorcontrib>Thomas, Andrew Guy</creatorcontrib><creatorcontrib>Habila, Mohamed A.</creatorcontrib><title>Exploring the Photocatalytic and Supercapacitive Potential of CuZr2S4 Thin Films: A Key to Cleaner and Safer Environments</title><title>Physica status solidi. A, Applications and materials science</title><description>In this research, an extensive exploration of bimetallic sulfide, CuZr2S4, is delved into. It involves the utilization of diethyldithiocarbamate as a sulfur source. The resulting thin film exhibits a well‐defined crystalline structure, characterized by an average crystallite size of 33 nm, indicating a commendable crystallinity of 87%. Bandgap energy through optical characterization is unveiled to be 2.5 eV, shedding light on the metal sulfide optical behavior. Furthermore, the elemental composition and chemical bonding of the thin film are elucidated using X‐ray photoelectron spectroscopy, revealing distinctive core‐level peaks associated with Cu 2p, Zr 3d, and S 2p. Electrochemical evaluations employing voltammetry measurements showcase remarkable specific capacitive performance, achieving an impressive value of 479 Fg−1. The thin film demonstrates exceptional stability over multiple cycles, underscoring its immense potential for diverse energy‐storage applications. A thorough assessment of the synthesized material's photocatalytic capabilities, namely its ability to degrade several types of environmental contaminants, is conducted. A bimetallic sulfide, CuZr2S4 thin film, is synthesized through physical vapor deposition. Thin film possesses remarkable properties resulting in exceptional performance. An impressive specific capacitance is exhibited portraying its energy‐storage potential. Moreover, the photocatalytic properties of the thin film also display its ability to degrade several environmental contaminants.</description><subject>Bimetals</subject><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Contaminants</subject><subject>Crystallites</subject><subject>Electrochemical analysis</subject><subject>Energy storage</subject><subject>energy storages</subject><subject>metal sulfides</subject><subject>Optical properties</subject><subject>photocatalysts</subject><subject>Photoelectrons</subject><subject>supercapacitors</subject><subject>Thin films</subject><subject>Zirconium</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAYhoMoOKdXzwHP1STNj8bbKJuKAwedFy8lbdMto0tqmk7739sx2eX73g8e3g8eAO4xesQIkae269QjQSRGSCb8AkxwwknEYywvzxmha3DTdTuEKKMCT8Aw_20b543dwLDVcLV1wZUqqGYIpoTKVjDrW-1L1arSBHMYERe0DUY10NUw7b88yShcb42FC9Psu2c4g-96gMHBtNHKan9qUfWY5vZgvLP7saC7BVe1ajp997-n4HMxX6ev0fLj5S2dLaMNSQSPGKdCI12ImMpaIppUsRJ1oVnFEh7rcdSY1pxxQmlCBSdlwVSCZaEFr6Rg8RQ8nHpb77573YV853pvx5c5kVwihrngIyVP1I9p9JC33uyVH3KM8qPb_Og2P7vNV1k2O1_xH78tb7k</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Gul, Mahwash Mahar</creator><creator>Ahmad, Khuram Shahzad</creator><creator>Thomas, Andrew Guy</creator><creator>Habila, Mohamed A.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9171-8904</orcidid></search><sort><creationdate>202403</creationdate><title>Exploring the Photocatalytic and Supercapacitive Potential of CuZr2S4 Thin Films: A Key to Cleaner and Safer Environments</title><author>Gul, Mahwash Mahar ; Ahmad, Khuram Shahzad ; Thomas, Andrew Guy ; Habila, Mohamed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2876-5647e0eb7349f9048d3a7fbe5d5863e586f14f65624484762cb5a819be76d9753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bimetals</topic><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Contaminants</topic><topic>Crystallites</topic><topic>Electrochemical analysis</topic><topic>Energy storage</topic><topic>energy storages</topic><topic>metal sulfides</topic><topic>Optical properties</topic><topic>photocatalysts</topic><topic>Photoelectrons</topic><topic>supercapacitors</topic><topic>Thin films</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gul, Mahwash Mahar</creatorcontrib><creatorcontrib>Ahmad, Khuram Shahzad</creatorcontrib><creatorcontrib>Thomas, Andrew Guy</creatorcontrib><creatorcontrib>Habila, Mohamed A.</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gul, Mahwash Mahar</au><au>Ahmad, Khuram Shahzad</au><au>Thomas, Andrew Guy</au><au>Habila, Mohamed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Photocatalytic and Supercapacitive Potential of CuZr2S4 Thin Films: A Key to Cleaner and Safer Environments</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-03</date><risdate>2024</risdate><volume>221</volume><issue>6</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>In this research, an extensive exploration of bimetallic sulfide, CuZr2S4, is delved into. It involves the utilization of diethyldithiocarbamate as a sulfur source. The resulting thin film exhibits a well‐defined crystalline structure, characterized by an average crystallite size of 33 nm, indicating a commendable crystallinity of 87%. Bandgap energy through optical characterization is unveiled to be 2.5 eV, shedding light on the metal sulfide optical behavior. Furthermore, the elemental composition and chemical bonding of the thin film are elucidated using X‐ray photoelectron spectroscopy, revealing distinctive core‐level peaks associated with Cu 2p, Zr 3d, and S 2p. Electrochemical evaluations employing voltammetry measurements showcase remarkable specific capacitive performance, achieving an impressive value of 479 Fg−1. The thin film demonstrates exceptional stability over multiple cycles, underscoring its immense potential for diverse energy‐storage applications. A thorough assessment of the synthesized material's photocatalytic capabilities, namely its ability to degrade several types of environmental contaminants, is conducted. A bimetallic sulfide, CuZr2S4 thin film, is synthesized through physical vapor deposition. Thin film possesses remarkable properties resulting in exceptional performance. An impressive specific capacitance is exhibited portraying its energy‐storage potential. Moreover, the photocatalytic properties of the thin film also display its ability to degrade several environmental contaminants.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202300986</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9171-8904</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2024-03, Vol.221 (6), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2969051676
source Wiley-Blackwell Read & Publish Collection
subjects Bimetals
Chemical bonds
Chemical composition
Contaminants
Crystallites
Electrochemical analysis
Energy storage
energy storages
metal sulfides
Optical properties
photocatalysts
Photoelectrons
supercapacitors
Thin films
Zirconium
title Exploring the Photocatalytic and Supercapacitive Potential of CuZr2S4 Thin Films: A Key to Cleaner and Safer Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Photocatalytic%20and%20Supercapacitive%20Potential%20of%20CuZr2S4%20Thin%20Films:%20A%20Key%20to%20Cleaner%20and%20Safer%20Environments&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Gul,%20Mahwash%20Mahar&rft.date=2024-03&rft.volume=221&rft.issue=6&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300986&rft_dat=%3Cproquest_wiley%3E2969051676%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g2876-5647e0eb7349f9048d3a7fbe5d5863e586f14f65624484762cb5a819be76d9753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2969051676&rft_id=info:pmid/&rfr_iscdi=true