Loading…

Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals

The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneou...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. A, Applications and materials science Applications and materials science, 2024-03, Vol.221 (6), p.n/a
Main Authors: Tokko, Olga Vladimirovna, Kadetova, Alexandra Vladimirovna, Prusskii, Andrey Ivanovich, Smirnov, Maxim Vladimirovich, Palatnikov, Mikhail Nikolaevich, Sidorov, Nikolay Vasilievich
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 6
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 221
creator Tokko, Olga Vladimirovna
Kadetova, Alexandra Vladimirovna
Prusskii, Andrey Ivanovich
Smirnov, Maxim Vladimirovich
Palatnikov, Mikhail Nikolaevich
Sidorov, Nikolay Vasilievich
description The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneous doping has the least number of intrinsic defects compared to the others. It has been established that ZnLi defects stimulate photoluminescence (PL) in the near‐IR region of the luminescence spectrum in the LiNbO3:Zn:Mg crystals obtained by homogeneous doping. The LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal has the maximum PL intensity and the LiNbO3:Zn:Mg (3.83:0.97 mol%) crystal has the minimum. Both crystals are doped homogeneously. Such defects as niobium vacancies (VNb) and niobium in the empty octahedron (Nboct) are suggested as luminescence quenchers in the co‐doped crystals. In the directly doped LiNbO3:Zn:Mg crystals impurities are placed in the lithium position. In homogeneously doped crystals the mechanism of magnesium incorporation into the structure depends on the zinc concentration. The ZnLi defects stimulated photoluminescence (PL) in the near‐IR region of the spectrum in the homogeneously doped crystals. The maximum PL intensity was observed in the LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal.
doi_str_mv 10.1002/pssa.202300796
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2969051689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969051689</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2336-4bea830a336a72bebf186836c5b0712e59b28ec1643c13ac95a27aea03c78f853</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqVw5RyJc8raThy7t6qlgBRopcKFi2WHDUrVJsFOhHrjE_hGvgRXRT3N7OppdzSEXFMYUQB223pvRgwYB8iUOCEDKgWLBafq9OgBzsmF92uAJE0yOiD5qnN90fUOI1O_R3m_rWr0BdZdtHRNi66r0EdNGc2a3m7w9_tnFrYBrJ7tgo_f6vHTRzR1O9-Zjb8kZ2UQvPrXIXmd371MH-J8cf84neRxyzgXcWLRSA4meJMxi7YM6SQXRWohowxTZZnEgoqEF5SbQqWGZQYN8CKTpUz5kNwc7rau-ezRd3rd9K4OLzVTQkFKhVSBUgfqq9rgTreu2hq30xT0vi69r0sf69LL1WpynPgfrEphNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969051689</pqid></control><display><type>article</type><title>Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Tokko, Olga Vladimirovna ; Kadetova, Alexandra Vladimirovna ; Prusskii, Andrey Ivanovich ; Smirnov, Maxim Vladimirovich ; Palatnikov, Mikhail Nikolaevich ; Sidorov, Nikolay Vasilievich</creator><creatorcontrib>Tokko, Olga Vladimirovna ; Kadetova, Alexandra Vladimirovna ; Prusskii, Andrey Ivanovich ; Smirnov, Maxim Vladimirovich ; Palatnikov, Mikhail Nikolaevich ; Sidorov, Nikolay Vasilievich</creatorcontrib><description>The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneous doping has the least number of intrinsic defects compared to the others. It has been established that ZnLi defects stimulate photoluminescence (PL) in the near‐IR region of the luminescence spectrum in the LiNbO3:Zn:Mg crystals obtained by homogeneous doping. The LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal has the maximum PL intensity and the LiNbO3:Zn:Mg (3.83:0.97 mol%) crystal has the minimum. Both crystals are doped homogeneously. Such defects as niobium vacancies (VNb) and niobium in the empty octahedron (Nboct) are suggested as luminescence quenchers in the co‐doped crystals. In the directly doped LiNbO3:Zn:Mg crystals impurities are placed in the lithium position. In homogeneously doped crystals the mechanism of magnesium incorporation into the structure depends on the zinc concentration. The ZnLi defects stimulated photoluminescence (PL) in the near‐IR region of the spectrum in the homogeneously doped crystals. The maximum PL intensity was observed in the LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300796</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Crystal defects ; Doped crystals ; Doping ; double doping ; lithium niobate ; Lithium niobates ; Luminescence ; luminescence centers ; Magnesium ; Niobium ; Optical properties ; Photoluminescence ; Point defects ; polarons ; XRD ; Zinc</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-03, Vol.221 (6), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2381-6662 ; 0000-0003-2645-5524 ; 0000-0003-3605-0897 ; 0000-0001-9686-0563 ; 0000-0001-5928-7198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tokko, Olga Vladimirovna</creatorcontrib><creatorcontrib>Kadetova, Alexandra Vladimirovna</creatorcontrib><creatorcontrib>Prusskii, Andrey Ivanovich</creatorcontrib><creatorcontrib>Smirnov, Maxim Vladimirovich</creatorcontrib><creatorcontrib>Palatnikov, Mikhail Nikolaevich</creatorcontrib><creatorcontrib>Sidorov, Nikolay Vasilievich</creatorcontrib><title>Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals</title><title>Physica status solidi. A, Applications and materials science</title><description>The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneous doping has the least number of intrinsic defects compared to the others. It has been established that ZnLi defects stimulate photoluminescence (PL) in the near‐IR region of the luminescence spectrum in the LiNbO3:Zn:Mg crystals obtained by homogeneous doping. The LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal has the maximum PL intensity and the LiNbO3:Zn:Mg (3.83:0.97 mol%) crystal has the minimum. Both crystals are doped homogeneously. Such defects as niobium vacancies (VNb) and niobium in the empty octahedron (Nboct) are suggested as luminescence quenchers in the co‐doped crystals. In the directly doped LiNbO3:Zn:Mg crystals impurities are placed in the lithium position. In homogeneously doped crystals the mechanism of magnesium incorporation into the structure depends on the zinc concentration. The ZnLi defects stimulated photoluminescence (PL) in the near‐IR region of the spectrum in the homogeneously doped crystals. The maximum PL intensity was observed in the LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal.</description><subject>Crystal defects</subject><subject>Doped crystals</subject><subject>Doping</subject><subject>double doping</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>Luminescence</subject><subject>luminescence centers</subject><subject>Magnesium</subject><subject>Niobium</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>polarons</subject><subject>XRD</subject><subject>Zinc</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EEqVw5RyJc8raThy7t6qlgBRopcKFi2WHDUrVJsFOhHrjE_hGvgRXRT3N7OppdzSEXFMYUQB223pvRgwYB8iUOCEDKgWLBafq9OgBzsmF92uAJE0yOiD5qnN90fUOI1O_R3m_rWr0BdZdtHRNi66r0EdNGc2a3m7w9_tnFrYBrJ7tgo_f6vHTRzR1O9-Zjb8kZ2UQvPrXIXmd371MH-J8cf84neRxyzgXcWLRSA4meJMxi7YM6SQXRWohowxTZZnEgoqEF5SbQqWGZQYN8CKTpUz5kNwc7rau-ezRd3rd9K4OLzVTQkFKhVSBUgfqq9rgTreu2hq30xT0vi69r0sf69LL1WpynPgfrEphNg</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Tokko, Olga Vladimirovna</creator><creator>Kadetova, Alexandra Vladimirovna</creator><creator>Prusskii, Andrey Ivanovich</creator><creator>Smirnov, Maxim Vladimirovich</creator><creator>Palatnikov, Mikhail Nikolaevich</creator><creator>Sidorov, Nikolay Vasilievich</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2381-6662</orcidid><orcidid>https://orcid.org/0000-0003-2645-5524</orcidid><orcidid>https://orcid.org/0000-0003-3605-0897</orcidid><orcidid>https://orcid.org/0000-0001-9686-0563</orcidid><orcidid>https://orcid.org/0000-0001-5928-7198</orcidid></search><sort><creationdate>202403</creationdate><title>Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals</title><author>Tokko, Olga Vladimirovna ; Kadetova, Alexandra Vladimirovna ; Prusskii, Andrey Ivanovich ; Smirnov, Maxim Vladimirovich ; Palatnikov, Mikhail Nikolaevich ; Sidorov, Nikolay Vasilievich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2336-4bea830a336a72bebf186836c5b0712e59b28ec1643c13ac95a27aea03c78f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal defects</topic><topic>Doped crystals</topic><topic>Doping</topic><topic>double doping</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>Luminescence</topic><topic>luminescence centers</topic><topic>Magnesium</topic><topic>Niobium</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>polarons</topic><topic>XRD</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokko, Olga Vladimirovna</creatorcontrib><creatorcontrib>Kadetova, Alexandra Vladimirovna</creatorcontrib><creatorcontrib>Prusskii, Andrey Ivanovich</creatorcontrib><creatorcontrib>Smirnov, Maxim Vladimirovich</creatorcontrib><creatorcontrib>Palatnikov, Mikhail Nikolaevich</creatorcontrib><creatorcontrib>Sidorov, Nikolay Vasilievich</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokko, Olga Vladimirovna</au><au>Kadetova, Alexandra Vladimirovna</au><au>Prusskii, Andrey Ivanovich</au><au>Smirnov, Maxim Vladimirovich</au><au>Palatnikov, Mikhail Nikolaevich</au><au>Sidorov, Nikolay Vasilievich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-03</date><risdate>2024</risdate><volume>221</volume><issue>6</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneous doping has the least number of intrinsic defects compared to the others. It has been established that ZnLi defects stimulate photoluminescence (PL) in the near‐IR region of the luminescence spectrum in the LiNbO3:Zn:Mg crystals obtained by homogeneous doping. The LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal has the maximum PL intensity and the LiNbO3:Zn:Mg (3.83:0.97 mol%) crystal has the minimum. Both crystals are doped homogeneously. Such defects as niobium vacancies (VNb) and niobium in the empty octahedron (Nboct) are suggested as luminescence quenchers in the co‐doped crystals. In the directly doped LiNbO3:Zn:Mg crystals impurities are placed in the lithium position. In homogeneously doped crystals the mechanism of magnesium incorporation into the structure depends on the zinc concentration. The ZnLi defects stimulated photoluminescence (PL) in the near‐IR region of the spectrum in the homogeneously doped crystals. The maximum PL intensity was observed in the LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202300796</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2381-6662</orcidid><orcidid>https://orcid.org/0000-0003-2645-5524</orcidid><orcidid>https://orcid.org/0000-0003-3605-0897</orcidid><orcidid>https://orcid.org/0000-0001-9686-0563</orcidid><orcidid>https://orcid.org/0000-0001-5928-7198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2024-03, Vol.221 (6), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2969051689
source Wiley-Blackwell Read & Publish Collection
subjects Crystal defects
Doped crystals
Doping
double doping
lithium niobate
Lithium niobates
Luminescence
luminescence centers
Magnesium
Niobium
Optical properties
Photoluminescence
Point defects
polarons
XRD
Zinc
title Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Luminescent%20Properties%20of%20Double%E2%80%90Doped%20LiNbO3:Zn:Mg%20Crystals&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Tokko,%20Olga%20Vladimirovna&rft.date=2024-03&rft.volume=221&rft.issue=6&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300796&rft_dat=%3Cproquest_wiley%3E2969051689%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2336-4bea830a336a72bebf186836c5b0712e59b28ec1643c13ac95a27aea03c78f853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2969051689&rft_id=info:pmid/&rfr_iscdi=true