Loading…
Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals
The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneou...
Saved in:
Published in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-03, Vol.221 (6), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 6 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 221 |
creator | Tokko, Olga Vladimirovna Kadetova, Alexandra Vladimirovna Prusskii, Andrey Ivanovich Smirnov, Maxim Vladimirovich Palatnikov, Mikhail Nikolaevich Sidorov, Nikolay Vasilievich |
description | The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneous doping has the least number of intrinsic defects compared to the others. It has been established that ZnLi defects stimulate photoluminescence (PL) in the near‐IR region of the luminescence spectrum in the LiNbO3:Zn:Mg crystals obtained by homogeneous doping. The LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal has the maximum PL intensity and the LiNbO3:Zn:Mg (3.83:0.97 mol%) crystal has the minimum. Both crystals are doped homogeneously. Such defects as niobium vacancies (VNb) and niobium in the empty octahedron (Nboct) are suggested as luminescence quenchers in the co‐doped crystals.
In the directly doped LiNbO3:Zn:Mg crystals impurities are placed in the lithium position. In homogeneously doped crystals the mechanism of magnesium incorporation into the structure depends on the zinc concentration. The ZnLi defects stimulated photoluminescence (PL) in the near‐IR region of the spectrum in the homogeneously doped crystals. The maximum PL intensity was observed in the LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal. |
doi_str_mv | 10.1002/pssa.202300796 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2969051689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969051689</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2336-4bea830a336a72bebf186836c5b0712e59b28ec1643c13ac95a27aea03c78f853</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqVw5RyJc8raThy7t6qlgBRopcKFi2WHDUrVJsFOhHrjE_hGvgRXRT3N7OppdzSEXFMYUQB223pvRgwYB8iUOCEDKgWLBafq9OgBzsmF92uAJE0yOiD5qnN90fUOI1O_R3m_rWr0BdZdtHRNi66r0EdNGc2a3m7w9_tnFrYBrJ7tgo_f6vHTRzR1O9-Zjb8kZ2UQvPrXIXmd371MH-J8cf84neRxyzgXcWLRSA4meJMxi7YM6SQXRWohowxTZZnEgoqEF5SbQqWGZQYN8CKTpUz5kNwc7rau-ezRd3rd9K4OLzVTQkFKhVSBUgfqq9rgTreu2hq30xT0vi69r0sf69LL1WpynPgfrEphNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969051689</pqid></control><display><type>article</type><title>Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tokko, Olga Vladimirovna ; Kadetova, Alexandra Vladimirovna ; Prusskii, Andrey Ivanovich ; Smirnov, Maxim Vladimirovich ; Palatnikov, Mikhail Nikolaevich ; Sidorov, Nikolay Vasilievich</creator><creatorcontrib>Tokko, Olga Vladimirovna ; Kadetova, Alexandra Vladimirovna ; Prusskii, Andrey Ivanovich ; Smirnov, Maxim Vladimirovich ; Palatnikov, Mikhail Nikolaevich ; Sidorov, Nikolay Vasilievich</creatorcontrib><description>The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneous doping has the least number of intrinsic defects compared to the others. It has been established that ZnLi defects stimulate photoluminescence (PL) in the near‐IR region of the luminescence spectrum in the LiNbO3:Zn:Mg crystals obtained by homogeneous doping. The LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal has the maximum PL intensity and the LiNbO3:Zn:Mg (3.83:0.97 mol%) crystal has the minimum. Both crystals are doped homogeneously. Such defects as niobium vacancies (VNb) and niobium in the empty octahedron (Nboct) are suggested as luminescence quenchers in the co‐doped crystals.
In the directly doped LiNbO3:Zn:Mg crystals impurities are placed in the lithium position. In homogeneously doped crystals the mechanism of magnesium incorporation into the structure depends on the zinc concentration. The ZnLi defects stimulated photoluminescence (PL) in the near‐IR region of the spectrum in the homogeneously doped crystals. The maximum PL intensity was observed in the LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202300796</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Crystal defects ; Doped crystals ; Doping ; double doping ; lithium niobate ; Lithium niobates ; Luminescence ; luminescence centers ; Magnesium ; Niobium ; Optical properties ; Photoluminescence ; Point defects ; polarons ; XRD ; Zinc</subject><ispartof>Physica status solidi. A, Applications and materials science, 2024-03, Vol.221 (6), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2381-6662 ; 0000-0003-2645-5524 ; 0000-0003-3605-0897 ; 0000-0001-9686-0563 ; 0000-0001-5928-7198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tokko, Olga Vladimirovna</creatorcontrib><creatorcontrib>Kadetova, Alexandra Vladimirovna</creatorcontrib><creatorcontrib>Prusskii, Andrey Ivanovich</creatorcontrib><creatorcontrib>Smirnov, Maxim Vladimirovich</creatorcontrib><creatorcontrib>Palatnikov, Mikhail Nikolaevich</creatorcontrib><creatorcontrib>Sidorov, Nikolay Vasilievich</creatorcontrib><title>Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals</title><title>Physica status solidi. A, Applications and materials science</title><description>The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneous doping has the least number of intrinsic defects compared to the others. It has been established that ZnLi defects stimulate photoluminescence (PL) in the near‐IR region of the luminescence spectrum in the LiNbO3:Zn:Mg crystals obtained by homogeneous doping. The LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal has the maximum PL intensity and the LiNbO3:Zn:Mg (3.83:0.97 mol%) crystal has the minimum. Both crystals are doped homogeneously. Such defects as niobium vacancies (VNb) and niobium in the empty octahedron (Nboct) are suggested as luminescence quenchers in the co‐doped crystals.
In the directly doped LiNbO3:Zn:Mg crystals impurities are placed in the lithium position. In homogeneously doped crystals the mechanism of magnesium incorporation into the structure depends on the zinc concentration. The ZnLi defects stimulated photoluminescence (PL) in the near‐IR region of the spectrum in the homogeneously doped crystals. The maximum PL intensity was observed in the LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal.</description><subject>Crystal defects</subject><subject>Doped crystals</subject><subject>Doping</subject><subject>double doping</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>Luminescence</subject><subject>luminescence centers</subject><subject>Magnesium</subject><subject>Niobium</subject><subject>Optical properties</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>polarons</subject><subject>XRD</subject><subject>Zinc</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EEqVw5RyJc8raThy7t6qlgBRopcKFi2WHDUrVJsFOhHrjE_hGvgRXRT3N7OppdzSEXFMYUQB223pvRgwYB8iUOCEDKgWLBafq9OgBzsmF92uAJE0yOiD5qnN90fUOI1O_R3m_rWr0BdZdtHRNi66r0EdNGc2a3m7w9_tnFrYBrJ7tgo_f6vHTRzR1O9-Zjb8kZ2UQvPrXIXmd371MH-J8cf84neRxyzgXcWLRSA4meJMxi7YM6SQXRWohowxTZZnEgoqEF5SbQqWGZQYN8CKTpUz5kNwc7rau-ezRd3rd9K4OLzVTQkFKhVSBUgfqq9rgTreu2hq30xT0vi69r0sf69LL1WpynPgfrEphNg</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Tokko, Olga Vladimirovna</creator><creator>Kadetova, Alexandra Vladimirovna</creator><creator>Prusskii, Andrey Ivanovich</creator><creator>Smirnov, Maxim Vladimirovich</creator><creator>Palatnikov, Mikhail Nikolaevich</creator><creator>Sidorov, Nikolay Vasilievich</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2381-6662</orcidid><orcidid>https://orcid.org/0000-0003-2645-5524</orcidid><orcidid>https://orcid.org/0000-0003-3605-0897</orcidid><orcidid>https://orcid.org/0000-0001-9686-0563</orcidid><orcidid>https://orcid.org/0000-0001-5928-7198</orcidid></search><sort><creationdate>202403</creationdate><title>Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals</title><author>Tokko, Olga Vladimirovna ; Kadetova, Alexandra Vladimirovna ; Prusskii, Andrey Ivanovich ; Smirnov, Maxim Vladimirovich ; Palatnikov, Mikhail Nikolaevich ; Sidorov, Nikolay Vasilievich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2336-4bea830a336a72bebf186836c5b0712e59b28ec1643c13ac95a27aea03c78f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crystal defects</topic><topic>Doped crystals</topic><topic>Doping</topic><topic>double doping</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>Luminescence</topic><topic>luminescence centers</topic><topic>Magnesium</topic><topic>Niobium</topic><topic>Optical properties</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>polarons</topic><topic>XRD</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokko, Olga Vladimirovna</creatorcontrib><creatorcontrib>Kadetova, Alexandra Vladimirovna</creatorcontrib><creatorcontrib>Prusskii, Andrey Ivanovich</creatorcontrib><creatorcontrib>Smirnov, Maxim Vladimirovich</creatorcontrib><creatorcontrib>Palatnikov, Mikhail Nikolaevich</creatorcontrib><creatorcontrib>Sidorov, Nikolay Vasilievich</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokko, Olga Vladimirovna</au><au>Kadetova, Alexandra Vladimirovna</au><au>Prusskii, Andrey Ivanovich</au><au>Smirnov, Maxim Vladimirovich</au><au>Palatnikov, Mikhail Nikolaevich</au><au>Sidorov, Nikolay Vasilievich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2024-03</date><risdate>2024</risdate><volume>221</volume><issue>6</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The correlation between photoluminescence in the near‐IR region and point defect centers in the LiNbO3 crystals co‐doped with Zn and Mg both by homogeneous and direct methods has been studied. X‐ray diffraction (XRD) analysis shows that the LiNbO3:Zn:Mg (4.68:0.9 mol%) crystal obtained by homogeneous doping has the least number of intrinsic defects compared to the others. It has been established that ZnLi defects stimulate photoluminescence (PL) in the near‐IR region of the luminescence spectrum in the LiNbO3:Zn:Mg crystals obtained by homogeneous doping. The LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal has the maximum PL intensity and the LiNbO3:Zn:Mg (3.83:0.97 mol%) crystal has the minimum. Both crystals are doped homogeneously. Such defects as niobium vacancies (VNb) and niobium in the empty octahedron (Nboct) are suggested as luminescence quenchers in the co‐doped crystals.
In the directly doped LiNbO3:Zn:Mg crystals impurities are placed in the lithium position. In homogeneously doped crystals the mechanism of magnesium incorporation into the structure depends on the zinc concentration. The ZnLi defects stimulated photoluminescence (PL) in the near‐IR region of the spectrum in the homogeneously doped crystals. The maximum PL intensity was observed in the LiNbO3:Zn:Mg (4.68:0.90 mol%) crystal.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202300796</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2381-6662</orcidid><orcidid>https://orcid.org/0000-0003-2645-5524</orcidid><orcidid>https://orcid.org/0000-0003-3605-0897</orcidid><orcidid>https://orcid.org/0000-0001-9686-0563</orcidid><orcidid>https://orcid.org/0000-0001-5928-7198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2024-03, Vol.221 (6), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2969051689 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Crystal defects Doped crystals Doping double doping lithium niobate Lithium niobates Luminescence luminescence centers Magnesium Niobium Optical properties Photoluminescence Point defects polarons XRD Zinc |
title | Structure and Luminescent Properties of Double‐Doped LiNbO3:Zn:Mg Crystals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Luminescent%20Properties%20of%20Double%E2%80%90Doped%20LiNbO3:Zn:Mg%20Crystals&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Tokko,%20Olga%20Vladimirovna&rft.date=2024-03&rft.volume=221&rft.issue=6&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202300796&rft_dat=%3Cproquest_wiley%3E2969051689%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2336-4bea830a336a72bebf186836c5b0712e59b28ec1643c13ac95a27aea03c78f853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2969051689&rft_id=info:pmid/&rfr_iscdi=true |