Loading…

F‐Doped Calcium Silicate Enabling Fast Ion Deposition Kinetics for Highly Reversible Zinc Metal Batteries

Aqueous zinc ion batteries (AZIBs) are subject to various unwanted side reactions, including dendrite growth, hydrogen evolution, and corrosion passivation, due to the highly active Zn anode. While constructing an artificial interface layer (AIL) can address these problems, the compromise in Zn depo...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2024-03, Vol.14 (12), p.n/a
Main Authors: Du, Hongxia, Wang, Yuankun, Liu, Xiaomeng, Wu, Xianwen, Yan, Zhenhua, Chen, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aqueous zinc ion batteries (AZIBs) are subject to various unwanted side reactions, including dendrite growth, hydrogen evolution, and corrosion passivation, due to the highly active Zn anode. While constructing an artificial interface layer (AIL) can address these problems, the compromise in Zn deposition kinetics is considerable. Herein, F‐doped modified hydrated calcium silicate (F‐CSH) nanosheets are designed to enhance Zn2+ ion deposition kinetics. Combined with theoretical calculations, it is verified that the F‐doped contributes to higher interface adsorption energy with Zn metal and lower ion diffusion barrier, favoring faster charge transfer compared to non‐F‐doped counterparts. Additionally, the strong interaction between zincophilic F and Zn facilitates rapid desolvation of Zn2+ and promotes the deposition between the Zn metal and F‐CSH interphases. As a result, the F‐CSH layer maintains the stability on the Zn surface, enabling fast and reversible Zn deposition. The F‐CSH@Zn anode exhibits a long lifespan of over 2800 h at 5 mA cm−2, while running more than 2500 cycles at a ≈100% Coulombic efficiency. This work highlights the importance of constructing AIL with strong interaction with Zn2+/Zn in improving the interphase kinetics of zinc anode for realizing the stability of AZIBs. F‐doped modified hydrated calcium silicate nanosheets are designed to enhance the deposition kinetics of Zn2+ ions. The strong interaction between zincophilic F and Zn benefits rapid desolvation of Zn2+ ions and promotes deposition between the Zn metal and F‐CSH interphases, enabling fast and reversible Zn deposition.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202304144