Loading…
Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model
For nonlinear Cosserat elasticity, we consider multiscale methods in this paper. In particular, we explore the generalized multiscale finite element method (GMsFEM) to solve an isotropic Cosserat problem with strain-limiting property (ensuring bounded linearized strains even under high stresses). Su...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ammosov, Dmitry Mai, Tina Galvis, Juan |
description | For nonlinear Cosserat elasticity, we consider multiscale methods in this paper. In particular, we explore the generalized multiscale finite element method (GMsFEM) to solve an isotropic Cosserat problem with strain-limiting property (ensuring bounded linearized strains even under high stresses). Such strain-limiting Cosserat model can find potential applications in solids and biological fibers. However, Cosserat media with naturally rotational degrees of freedom, nonlinear constitutive relations, high contrast, and heterogeneities may produce challenging multiscale characteristics in the solution, and upscaling by multiscale methods is necessary. Therefore, we utilize the offline and residual-based online (adaptive or uniform) GMsFEM in this context while handling the nonlinearity by Picard iteration. Through various two-dimensional experiments (for perforated, composite, and stochastically heterogeneous media with small and big strain-limiting parameters), our numerical results show the approaches' convergence, efficiency, and robustness. In addition, these results demonstrate that such approaches provide good accuracy, the online GMsFEM gives more accurate solutions than the offline one, and the online adaptive strategy has similar accuracy to the uniform one but with fewer degrees of freedom. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2973277736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973277736</sourcerecordid><originalsourceid>FETCH-proquest_journals_29732777363</originalsourceid><addsrcrecordid>eNqNjE0KwjAQRoMgWLR3GHBdqIltdF38OYB7Ce1Up6QTzaQbT28XHsDVW7z3fQuVaWN2xWGv9UrlIkNZlrq2uqpMptoLMkbn6YMdjJNPJK3zCD0xJQT0OCInGDE9Qwd9iOCAA3tidHHWThK1ICk64sLTSIn4AU0QmV_nXejQb9Syd14w_3GttufTrbkWrxjeE0q6D2GKPKu7PlqjrbWmNv9VX1gWRvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973277736</pqid></control><display><type>article</type><title>Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model</title><source>Publicly Available Content Database</source><creator>Ammosov, Dmitry ; Mai, Tina ; Galvis, Juan</creator><creatorcontrib>Ammosov, Dmitry ; Mai, Tina ; Galvis, Juan</creatorcontrib><description>For nonlinear Cosserat elasticity, we consider multiscale methods in this paper. In particular, we explore the generalized multiscale finite element method (GMsFEM) to solve an isotropic Cosserat problem with strain-limiting property (ensuring bounded linearized strains even under high stresses). Such strain-limiting Cosserat model can find potential applications in solids and biological fibers. However, Cosserat media with naturally rotational degrees of freedom, nonlinear constitutive relations, high contrast, and heterogeneities may produce challenging multiscale characteristics in the solution, and upscaling by multiscale methods is necessary. Therefore, we utilize the offline and residual-based online (adaptive or uniform) GMsFEM in this context while handling the nonlinearity by Picard iteration. Through various two-dimensional experiments (for perforated, composite, and stochastically heterogeneous media with small and big strain-limiting parameters), our numerical results show the approaches' convergence, efficiency, and robustness. In addition, these results demonstrate that such approaches provide good accuracy, the online GMsFEM gives more accurate solutions than the offline one, and the online adaptive strategy has similar accuracy to the uniform one but with fewer degrees of freedom.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Constitutive relationships ; Constraining ; Degrees of freedom ; Elastic limit ; Finite element analysis ; Finite element method ; Iterative methods ; Multiscale analysis ; Nonlinearity ; Picard iterations ; Robustness (mathematics) ; Strain</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2973277736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ammosov, Dmitry</creatorcontrib><creatorcontrib>Mai, Tina</creatorcontrib><creatorcontrib>Galvis, Juan</creatorcontrib><title>Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model</title><title>arXiv.org</title><description>For nonlinear Cosserat elasticity, we consider multiscale methods in this paper. In particular, we explore the generalized multiscale finite element method (GMsFEM) to solve an isotropic Cosserat problem with strain-limiting property (ensuring bounded linearized strains even under high stresses). Such strain-limiting Cosserat model can find potential applications in solids and biological fibers. However, Cosserat media with naturally rotational degrees of freedom, nonlinear constitutive relations, high contrast, and heterogeneities may produce challenging multiscale characteristics in the solution, and upscaling by multiscale methods is necessary. Therefore, we utilize the offline and residual-based online (adaptive or uniform) GMsFEM in this context while handling the nonlinearity by Picard iteration. Through various two-dimensional experiments (for perforated, composite, and stochastically heterogeneous media with small and big strain-limiting parameters), our numerical results show the approaches' convergence, efficiency, and robustness. In addition, these results demonstrate that such approaches provide good accuracy, the online GMsFEM gives more accurate solutions than the offline one, and the online adaptive strategy has similar accuracy to the uniform one but with fewer degrees of freedom.</description><subject>Accuracy</subject><subject>Constitutive relationships</subject><subject>Constraining</subject><subject>Degrees of freedom</subject><subject>Elastic limit</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Iterative methods</subject><subject>Multiscale analysis</subject><subject>Nonlinearity</subject><subject>Picard iterations</subject><subject>Robustness (mathematics)</subject><subject>Strain</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjE0KwjAQRoMgWLR3GHBdqIltdF38OYB7Ce1Up6QTzaQbT28XHsDVW7z3fQuVaWN2xWGv9UrlIkNZlrq2uqpMptoLMkbn6YMdjJNPJK3zCD0xJQT0OCInGDE9Qwd9iOCAA3tidHHWThK1ICk64sLTSIn4AU0QmV_nXejQb9Syd14w_3GttufTrbkWrxjeE0q6D2GKPKu7PlqjrbWmNv9VX1gWRvw</recordid><startdate>20240321</startdate><enddate>20240321</enddate><creator>Ammosov, Dmitry</creator><creator>Mai, Tina</creator><creator>Galvis, Juan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240321</creationdate><title>Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model</title><author>Ammosov, Dmitry ; Mai, Tina ; Galvis, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29732777363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Constitutive relationships</topic><topic>Constraining</topic><topic>Degrees of freedom</topic><topic>Elastic limit</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Iterative methods</topic><topic>Multiscale analysis</topic><topic>Nonlinearity</topic><topic>Picard iterations</topic><topic>Robustness (mathematics)</topic><topic>Strain</topic><toplevel>online_resources</toplevel><creatorcontrib>Ammosov, Dmitry</creatorcontrib><creatorcontrib>Mai, Tina</creatorcontrib><creatorcontrib>Galvis, Juan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammosov, Dmitry</au><au>Mai, Tina</au><au>Galvis, Juan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model</atitle><jtitle>arXiv.org</jtitle><date>2024-03-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For nonlinear Cosserat elasticity, we consider multiscale methods in this paper. In particular, we explore the generalized multiscale finite element method (GMsFEM) to solve an isotropic Cosserat problem with strain-limiting property (ensuring bounded linearized strains even under high stresses). Such strain-limiting Cosserat model can find potential applications in solids and biological fibers. However, Cosserat media with naturally rotational degrees of freedom, nonlinear constitutive relations, high contrast, and heterogeneities may produce challenging multiscale characteristics in the solution, and upscaling by multiscale methods is necessary. Therefore, we utilize the offline and residual-based online (adaptive or uniform) GMsFEM in this context while handling the nonlinearity by Picard iteration. Through various two-dimensional experiments (for perforated, composite, and stochastically heterogeneous media with small and big strain-limiting parameters), our numerical results show the approaches' convergence, efficiency, and robustness. In addition, these results demonstrate that such approaches provide good accuracy, the online GMsFEM gives more accurate solutions than the offline one, and the online adaptive strategy has similar accuracy to the uniform one but with fewer degrees of freedom.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2973277736 |
source | Publicly Available Content Database |
subjects | Accuracy Constitutive relationships Constraining Degrees of freedom Elastic limit Finite element analysis Finite element method Iterative methods Multiscale analysis Nonlinearity Picard iterations Robustness (mathematics) Strain |
title | Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20multiscale%20finite%20element%20method%20for%20a%20nonlinear%20elastic%20strain-limiting%20Cosserat%20model&rft.jtitle=arXiv.org&rft.au=Ammosov,%20Dmitry&rft.date=2024-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2973277736%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29732777363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2973277736&rft_id=info:pmid/&rfr_iscdi=true |