Loading…
Investigation of defects formation in ZrN thin film by proton and swift heavy ion irradiations
ZrN films were irradiated with 2 MeV proton and 91.3 MeV Xe ion. Our aim is to demonstrate the radiation damage tolerance of nanostructured ZrN. Uv–visible spectroscopy revealed localized surface plasmon resonance (LSPR) band at 650 nm of ZrN nanoparticles. After irradiation the LSPR band intensity...
Saved in:
Published in: | Journal of radioanalytical and nuclear chemistry 2024-03, Vol.333 (3), p.1097-1105 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-2b547bf30adc9a9fdfa1e4afd6abe9394b39f4f9f4d637a939593b3b2103c3b13 |
container_end_page | 1105 |
container_issue | 3 |
container_start_page | 1097 |
container_title | Journal of radioanalytical and nuclear chemistry |
container_volume | 333 |
creator | Dahmani, M. Izerrouken, M. Azibi, M. Saoula, N. Haid, F. Sari, A. Dahmane, A. Ishaq, A. Ghamnia, M. |
description | ZrN films were irradiated with 2 MeV proton and 91.3 MeV Xe ion. Our aim is to demonstrate the radiation damage tolerance of nanostructured ZrN. Uv–visible spectroscopy revealed localized surface plasmon resonance (LSPR) band at 650 nm of ZrN nanoparticles. After irradiation the LSPR band intensity increases and become larger. The band gap decreases, while Urbach energy increases indicating defect formation. It is found a better crystallinity and no swelling or contraction in the studied fluence range. Therefore, nanostructured ZrN can be used in harsh irradiation environments such as neutron reactors and aerospace without altering its structural and plasmonic properties. |
doi_str_mv | 10.1007/s10967-024-09374-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2973435600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2973435600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2b547bf30adc9a9fdfa1e4afd6abe9394b39f4f9f4d637a939593b3b2103c3b13</originalsourceid><addsrcrecordid>eNp9UMlOwzAQtRBIlMIPcLLEOTD2JHF8RBVLpQoucOGAZSd2m6pNiu0W9e9xGyRuHGbRzHuzPEKuGdwyAHEXGMhSZMDzDCSK5E_IiBVVlXFRwSkZAccyKwSyc3IRwhIAZFXhiHxOu50NsZ3r2PYd7R1trLN1DNT1fj0U245--BcaFylx7WpNzZ5ufB9TS3cNDd-ti3Rh9W5Pj3DvddMeqeGSnDm9CvbqN47J--PD2-Q5m70-TSf3s6zmAmLGTZEL4xB0U0stXeM0s7l2TamNlShzg9LlLllTotCpUkg0aDgDrNEwHJObYW6662ubHlLLfuu7tFJxKTDHogRIKD6gat-H4K1TG9-utd8rBuqgoxp0VElHddRRHUg4kEICd3Pr_0b_w_oBa1t3Fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973435600</pqid></control><display><type>article</type><title>Investigation of defects formation in ZrN thin film by proton and swift heavy ion irradiations</title><source>Springer Link</source><creator>Dahmani, M. ; Izerrouken, M. ; Azibi, M. ; Saoula, N. ; Haid, F. ; Sari, A. ; Dahmane, A. ; Ishaq, A. ; Ghamnia, M.</creator><creatorcontrib>Dahmani, M. ; Izerrouken, M. ; Azibi, M. ; Saoula, N. ; Haid, F. ; Sari, A. ; Dahmane, A. ; Ishaq, A. ; Ghamnia, M.</creatorcontrib><description>ZrN films were irradiated with 2 MeV proton and 91.3 MeV Xe ion. Our aim is to demonstrate the radiation damage tolerance of nanostructured ZrN. Uv–visible spectroscopy revealed localized surface plasmon resonance (LSPR) band at 650 nm of ZrN nanoparticles. After irradiation the LSPR band intensity increases and become larger. The band gap decreases, while Urbach energy increases indicating defect formation. It is found a better crystallinity and no swelling or contraction in the studied fluence range. Therefore, nanostructured ZrN can be used in harsh irradiation environments such as neutron reactors and aerospace without altering its structural and plasmonic properties.</description><identifier>ISSN: 0236-5731</identifier><identifier>EISSN: 1588-2780</identifier><identifier>DOI: 10.1007/s10967-024-09374-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Crystal defects ; Damage localization ; Damage tolerance ; Diagnostic Radiology ; Fluence ; Hadrons ; Heavy Ions ; Inorganic Chemistry ; Nanostructure ; Nuclear Chemistry ; Nuclear Physics ; Physical Chemistry ; Protons ; Radiation damage ; Surface plasmon resonance ; Thin films ; Zirconium nitrides</subject><ispartof>Journal of radioanalytical and nuclear chemistry, 2024-03, Vol.333 (3), p.1097-1105</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2b547bf30adc9a9fdfa1e4afd6abe9394b39f4f9f4d637a939593b3b2103c3b13</cites><orcidid>0000-0001-6750-3778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dahmani, M.</creatorcontrib><creatorcontrib>Izerrouken, M.</creatorcontrib><creatorcontrib>Azibi, M.</creatorcontrib><creatorcontrib>Saoula, N.</creatorcontrib><creatorcontrib>Haid, F.</creatorcontrib><creatorcontrib>Sari, A.</creatorcontrib><creatorcontrib>Dahmane, A.</creatorcontrib><creatorcontrib>Ishaq, A.</creatorcontrib><creatorcontrib>Ghamnia, M.</creatorcontrib><title>Investigation of defects formation in ZrN thin film by proton and swift heavy ion irradiations</title><title>Journal of radioanalytical and nuclear chemistry</title><addtitle>J Radioanal Nucl Chem</addtitle><description>ZrN films were irradiated with 2 MeV proton and 91.3 MeV Xe ion. Our aim is to demonstrate the radiation damage tolerance of nanostructured ZrN. Uv–visible spectroscopy revealed localized surface plasmon resonance (LSPR) band at 650 nm of ZrN nanoparticles. After irradiation the LSPR band intensity increases and become larger. The band gap decreases, while Urbach energy increases indicating defect formation. It is found a better crystallinity and no swelling or contraction in the studied fluence range. Therefore, nanostructured ZrN can be used in harsh irradiation environments such as neutron reactors and aerospace without altering its structural and plasmonic properties.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystal defects</subject><subject>Damage localization</subject><subject>Damage tolerance</subject><subject>Diagnostic Radiology</subject><subject>Fluence</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Inorganic Chemistry</subject><subject>Nanostructure</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Physics</subject><subject>Physical Chemistry</subject><subject>Protons</subject><subject>Radiation damage</subject><subject>Surface plasmon resonance</subject><subject>Thin films</subject><subject>Zirconium nitrides</subject><issn>0236-5731</issn><issn>1588-2780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMlOwzAQtRBIlMIPcLLEOTD2JHF8RBVLpQoucOGAZSd2m6pNiu0W9e9xGyRuHGbRzHuzPEKuGdwyAHEXGMhSZMDzDCSK5E_IiBVVlXFRwSkZAccyKwSyc3IRwhIAZFXhiHxOu50NsZ3r2PYd7R1trLN1DNT1fj0U245--BcaFylx7WpNzZ5ufB9TS3cNDd-ti3Rh9W5Pj3DvddMeqeGSnDm9CvbqN47J--PD2-Q5m70-TSf3s6zmAmLGTZEL4xB0U0stXeM0s7l2TamNlShzg9LlLllTotCpUkg0aDgDrNEwHJObYW6662ubHlLLfuu7tFJxKTDHogRIKD6gat-H4K1TG9-utd8rBuqgoxp0VElHddRRHUg4kEICd3Pr_0b_w_oBa1t3Fg</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Dahmani, M.</creator><creator>Izerrouken, M.</creator><creator>Azibi, M.</creator><creator>Saoula, N.</creator><creator>Haid, F.</creator><creator>Sari, A.</creator><creator>Dahmane, A.</creator><creator>Ishaq, A.</creator><creator>Ghamnia, M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6750-3778</orcidid></search><sort><creationdate>20240301</creationdate><title>Investigation of defects formation in ZrN thin film by proton and swift heavy ion irradiations</title><author>Dahmani, M. ; Izerrouken, M. ; Azibi, M. ; Saoula, N. ; Haid, F. ; Sari, A. ; Dahmane, A. ; Ishaq, A. ; Ghamnia, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2b547bf30adc9a9fdfa1e4afd6abe9394b39f4f9f4d637a939593b3b2103c3b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystal defects</topic><topic>Damage localization</topic><topic>Damage tolerance</topic><topic>Diagnostic Radiology</topic><topic>Fluence</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Inorganic Chemistry</topic><topic>Nanostructure</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Physics</topic><topic>Physical Chemistry</topic><topic>Protons</topic><topic>Radiation damage</topic><topic>Surface plasmon resonance</topic><topic>Thin films</topic><topic>Zirconium nitrides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dahmani, M.</creatorcontrib><creatorcontrib>Izerrouken, M.</creatorcontrib><creatorcontrib>Azibi, M.</creatorcontrib><creatorcontrib>Saoula, N.</creatorcontrib><creatorcontrib>Haid, F.</creatorcontrib><creatorcontrib>Sari, A.</creatorcontrib><creatorcontrib>Dahmane, A.</creatorcontrib><creatorcontrib>Ishaq, A.</creatorcontrib><creatorcontrib>Ghamnia, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dahmani, M.</au><au>Izerrouken, M.</au><au>Azibi, M.</au><au>Saoula, N.</au><au>Haid, F.</au><au>Sari, A.</au><au>Dahmane, A.</au><au>Ishaq, A.</au><au>Ghamnia, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of defects formation in ZrN thin film by proton and swift heavy ion irradiations</atitle><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle><stitle>J Radioanal Nucl Chem</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>333</volume><issue>3</issue><spage>1097</spage><epage>1105</epage><pages>1097-1105</pages><issn>0236-5731</issn><eissn>1588-2780</eissn><abstract>ZrN films were irradiated with 2 MeV proton and 91.3 MeV Xe ion. Our aim is to demonstrate the radiation damage tolerance of nanostructured ZrN. Uv–visible spectroscopy revealed localized surface plasmon resonance (LSPR) band at 650 nm of ZrN nanoparticles. After irradiation the LSPR band intensity increases and become larger. The band gap decreases, while Urbach energy increases indicating defect formation. It is found a better crystallinity and no swelling or contraction in the studied fluence range. Therefore, nanostructured ZrN can be used in harsh irradiation environments such as neutron reactors and aerospace without altering its structural and plasmonic properties.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10967-024-09374-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6750-3778</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0236-5731 |
ispartof | Journal of radioanalytical and nuclear chemistry, 2024-03, Vol.333 (3), p.1097-1105 |
issn | 0236-5731 1588-2780 |
language | eng |
recordid | cdi_proquest_journals_2973435600 |
source | Springer Link |
subjects | Chemistry Chemistry and Materials Science Crystal defects Damage localization Damage tolerance Diagnostic Radiology Fluence Hadrons Heavy Ions Inorganic Chemistry Nanostructure Nuclear Chemistry Nuclear Physics Physical Chemistry Protons Radiation damage Surface plasmon resonance Thin films Zirconium nitrides |
title | Investigation of defects formation in ZrN thin film by proton and swift heavy ion irradiations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20defects%20formation%20in%20ZrN%20thin%20film%20by%20proton%20and%20swift%20heavy%20ion%20irradiations&rft.jtitle=Journal%20of%20radioanalytical%20and%20nuclear%20chemistry&rft.au=Dahmani,%20M.&rft.date=2024-03-01&rft.volume=333&rft.issue=3&rft.spage=1097&rft.epage=1105&rft.pages=1097-1105&rft.issn=0236-5731&rft.eissn=1588-2780&rft_id=info:doi/10.1007/s10967-024-09374-0&rft_dat=%3Cproquest_cross%3E2973435600%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-2b547bf30adc9a9fdfa1e4afd6abe9394b39f4f9f4d637a939593b3b2103c3b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2973435600&rft_id=info:pmid/&rfr_iscdi=true |