Loading…

Automatic rigging of 3D models with stacked hourglass networks and descriptors

We put forward an approach for automated skeleton rigging of 3D point cloud models of segmented characters. Unlike earlier systems that fit predetermined skeleton templates or forecast predetermined sets of joints, our approach generates an animation skeleton that is tuned to the structure and geome...

Full description

Saved in:
Bibliographic Details
Main Authors: Verma, Ritika, Mittal, Sarthak, Pawar, Siddharth, Sharma, Moolchand, Goel, Shalini, Albuquerque, Victor Hugo C. de
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2919
creator Verma, Ritika
Mittal, Sarthak
Pawar, Siddharth
Sharma, Moolchand
Goel, Shalini
Albuquerque, Victor Hugo C. de
description We put forward an approach for automated skeleton rigging of 3D point cloud models of segmented characters. Unlike earlier systems that fit predetermined skeleton templates or forecast predetermined sets of joints, our approach generates an animation skeleton that is tuned to the structure and geometry of the input 3D model. Our architecture is built on a stack of hourglass models trained using a large dataset of 3D-rigged characters mined from the web. It works with a volumetric representation of the input 3D shapes enhanced with geometric shape elements that provide different indications for joint and bone positions. The proposed method also allows straightforward user customization of the output skeleton’s level of detail. Our study shows that, compared to many alternatives and baselines, our approach predicts animation skeletons that are significantly more comparable to those made by people.
doi_str_mv 10.1063/5.0184393
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2979200675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2979200675</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1683-4b56720d1c4e7b004426b30002ff0008417726e945393e271725932988c73d0d3</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTD15j2zLPUJRTcK7sLMJDNNH5MxSSn-eyPt5pzN4d7zHYRuCcwISPYgZkBKzip2hiZECFIoSeQ5mgBUvKCcfV-iqxjXALRSqpyg9_k--V2dXIuD63s39Nh3mD3inTd2G_HBpRWOqW431uCV34d-W8eIB5sOPmwirgeDjY1tcGPyIV6ji67eRntz8in6en76XLwWy4-Xt8V8WYxElqzgjZCKgiEtt6oB4JzKhkFu1XVZS06UotJWXGQSSxVRVFSMVmXZKmbAsCm6O94dg__Z25j0Oncb8kudwSoKIJXIqftjKrYuZUY_6DG4XR1-NQH9v5cW-rQX-wOVVVpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2979200675</pqid></control><display><type>conference_proceeding</type><title>Automatic rigging of 3D models with stacked hourglass networks and descriptors</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Verma, Ritika ; Mittal, Sarthak ; Pawar, Siddharth ; Sharma, Moolchand ; Goel, Shalini ; Albuquerque, Victor Hugo C. de</creator><contributor>Gupta, Deepak ; Bashir, Ali Kashif ; Kaushik, Achal ; Khanna, Ashish</contributor><creatorcontrib>Verma, Ritika ; Mittal, Sarthak ; Pawar, Siddharth ; Sharma, Moolchand ; Goel, Shalini ; Albuquerque, Victor Hugo C. de ; Gupta, Deepak ; Bashir, Ali Kashif ; Kaushik, Achal ; Khanna, Ashish</creatorcontrib><description>We put forward an approach for automated skeleton rigging of 3D point cloud models of segmented characters. Unlike earlier systems that fit predetermined skeleton templates or forecast predetermined sets of joints, our approach generates an animation skeleton that is tuned to the structure and geometry of the input 3D model. Our architecture is built on a stack of hourglass models trained using a large dataset of 3D-rigged characters mined from the web. It works with a volumetric representation of the input 3D shapes enhanced with geometric shape elements that provide different indications for joint and bone positions. The proposed method also allows straightforward user customization of the output skeleton’s level of detail. Our study shows that, compared to many alternatives and baselines, our approach predicts animation skeletons that are significantly more comparable to those made by people.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0184393</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Animation ; Rigging ; Three dimensional models</subject><ispartof>AIP conference proceedings, 2024, Vol.2919 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Gupta, Deepak</contributor><contributor>Bashir, Ali Kashif</contributor><contributor>Kaushik, Achal</contributor><contributor>Khanna, Ashish</contributor><creatorcontrib>Verma, Ritika</creatorcontrib><creatorcontrib>Mittal, Sarthak</creatorcontrib><creatorcontrib>Pawar, Siddharth</creatorcontrib><creatorcontrib>Sharma, Moolchand</creatorcontrib><creatorcontrib>Goel, Shalini</creatorcontrib><creatorcontrib>Albuquerque, Victor Hugo C. de</creatorcontrib><title>Automatic rigging of 3D models with stacked hourglass networks and descriptors</title><title>AIP conference proceedings</title><description>We put forward an approach for automated skeleton rigging of 3D point cloud models of segmented characters. Unlike earlier systems that fit predetermined skeleton templates or forecast predetermined sets of joints, our approach generates an animation skeleton that is tuned to the structure and geometry of the input 3D model. Our architecture is built on a stack of hourglass models trained using a large dataset of 3D-rigged characters mined from the web. It works with a volumetric representation of the input 3D shapes enhanced with geometric shape elements that provide different indications for joint and bone positions. The proposed method also allows straightforward user customization of the output skeleton’s level of detail. Our study shows that, compared to many alternatives and baselines, our approach predicts animation skeletons that are significantly more comparable to those made by people.</description><subject>Animation</subject><subject>Rigging</subject><subject>Three dimensional models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTD15j2zLPUJRTcK7sLMJDNNH5MxSSn-eyPt5pzN4d7zHYRuCcwISPYgZkBKzip2hiZECFIoSeQ5mgBUvKCcfV-iqxjXALRSqpyg9_k--V2dXIuD63s39Nh3mD3inTd2G_HBpRWOqW431uCV34d-W8eIB5sOPmwirgeDjY1tcGPyIV6ji67eRntz8in6en76XLwWy4-Xt8V8WYxElqzgjZCKgiEtt6oB4JzKhkFu1XVZS06UotJWXGQSSxVRVFSMVmXZKmbAsCm6O94dg__Z25j0Oncb8kudwSoKIJXIqftjKrYuZUY_6DG4XR1-NQH9v5cW-rQX-wOVVVpn</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Verma, Ritika</creator><creator>Mittal, Sarthak</creator><creator>Pawar, Siddharth</creator><creator>Sharma, Moolchand</creator><creator>Goel, Shalini</creator><creator>Albuquerque, Victor Hugo C. de</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240325</creationdate><title>Automatic rigging of 3D models with stacked hourglass networks and descriptors</title><author>Verma, Ritika ; Mittal, Sarthak ; Pawar, Siddharth ; Sharma, Moolchand ; Goel, Shalini ; Albuquerque, Victor Hugo C. de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1683-4b56720d1c4e7b004426b30002ff0008417726e945393e271725932988c73d0d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animation</topic><topic>Rigging</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Ritika</creatorcontrib><creatorcontrib>Mittal, Sarthak</creatorcontrib><creatorcontrib>Pawar, Siddharth</creatorcontrib><creatorcontrib>Sharma, Moolchand</creatorcontrib><creatorcontrib>Goel, Shalini</creatorcontrib><creatorcontrib>Albuquerque, Victor Hugo C. de</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Ritika</au><au>Mittal, Sarthak</au><au>Pawar, Siddharth</au><au>Sharma, Moolchand</au><au>Goel, Shalini</au><au>Albuquerque, Victor Hugo C. de</au><au>Gupta, Deepak</au><au>Bashir, Ali Kashif</au><au>Kaushik, Achal</au><au>Khanna, Ashish</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic rigging of 3D models with stacked hourglass networks and descriptors</atitle><btitle>AIP conference proceedings</btitle><date>2024-03-25</date><risdate>2024</risdate><volume>2919</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>We put forward an approach for automated skeleton rigging of 3D point cloud models of segmented characters. Unlike earlier systems that fit predetermined skeleton templates or forecast predetermined sets of joints, our approach generates an animation skeleton that is tuned to the structure and geometry of the input 3D model. Our architecture is built on a stack of hourglass models trained using a large dataset of 3D-rigged characters mined from the web. It works with a volumetric representation of the input 3D shapes enhanced with geometric shape elements that provide different indications for joint and bone positions. The proposed method also allows straightforward user customization of the output skeleton’s level of detail. Our study shows that, compared to many alternatives and baselines, our approach predicts animation skeletons that are significantly more comparable to those made by people.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0184393</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2919 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2979200675
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Animation
Rigging
Three dimensional models
title Automatic rigging of 3D models with stacked hourglass networks and descriptors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20rigging%20of%203D%20models%20with%20stacked%20hourglass%20networks%20and%20descriptors&rft.btitle=AIP%20conference%20proceedings&rft.au=Verma,%20Ritika&rft.date=2024-03-25&rft.volume=2919&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0184393&rft_dat=%3Cproquest_scita%3E2979200675%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1683-4b56720d1c4e7b004426b30002ff0008417726e945393e271725932988c73d0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2979200675&rft_id=info:pmid/&rfr_iscdi=true