Loading…
On the validity of the rotating wave approximation for coupled harmonic oscillators
In this work we study the validity of the rotating wave approximation of an ideal system composed of two harmonic oscillators evolving with a quadratic Hamiltonian and arbitrarily strong interaction. We solve the dynamics analytically by employing tools from symplectic geometry. We focus on systems...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Heib, Tim Lageyre, Paul Ferreri, Alessandro Wilhelm, Frank K Paraoanu, G S Burgarth, Daniel Schell, Andreas Wolfgang Bruschi, David Edward |
description | In this work we study the validity of the rotating wave approximation of an ideal system composed of two harmonic oscillators evolving with a quadratic Hamiltonian and arbitrarily strong interaction. We solve the dynamics analytically by employing tools from symplectic geometry. We focus on systems with initial Gaussian states and quantify exactly the deviation between the state obtained through the rotating approximation and the state obtained through the full evolution, therefore providing an answer for all values of the coupling. We find that the squeezing present in the full Hamiltonian and in the initial state governs the deviation from the approximated evolution. Furthermore, we also show that the rotating wave approximation is recovered for resonant frequencies and vanishing coupling to frequency ratio. Finally, we give a general proof of the rotating wave approximation and estimate its convergence on Fock states. Applications and potential physical implementations are also discussed. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2982466006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2982466006</sourcerecordid><originalsourceid>FETCH-proquest_journals_29824660063</originalsourceid><addsrcrecordid>eNqNjNEKgjAYhUcQJOU7_NC1sDZddh1Fd13UvQydOpn7bZtWb59ED9DV4Xzn4yxIxDjfJXnK2IrE3neUUib2LMt4RG5XC6FVMEmjKx3egPW3OwwyaNvAU04K5DA4fOl-RmihRgcljoNRFbTS9Wh1CehLbYwM6PyGLGtpvIp_uSbb8-l-vCTzyWNUPhQdjs7OU8EOOUuFoFTw_6wPhRdA4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2982466006</pqid></control><display><type>article</type><title>On the validity of the rotating wave approximation for coupled harmonic oscillators</title><source>Publicly Available Content Database</source><creator>Heib, Tim ; Lageyre, Paul ; Ferreri, Alessandro ; Wilhelm, Frank K ; Paraoanu, G S ; Burgarth, Daniel ; Schell, Andreas Wolfgang ; Bruschi, David Edward</creator><creatorcontrib>Heib, Tim ; Lageyre, Paul ; Ferreri, Alessandro ; Wilhelm, Frank K ; Paraoanu, G S ; Burgarth, Daniel ; Schell, Andreas Wolfgang ; Bruschi, David Edward</creatorcontrib><description>In this work we study the validity of the rotating wave approximation of an ideal system composed of two harmonic oscillators evolving with a quadratic Hamiltonian and arbitrarily strong interaction. We solve the dynamics analytically by employing tools from symplectic geometry. We focus on systems with initial Gaussian states and quantify exactly the deviation between the state obtained through the rotating approximation and the state obtained through the full evolution, therefore providing an answer for all values of the coupling. We find that the squeezing present in the full Hamiltonian and in the initial state governs the deviation from the approximated evolution. Furthermore, we also show that the rotating wave approximation is recovered for resonant frequencies and vanishing coupling to frequency ratio. Finally, we give a general proof of the rotating wave approximation and estimate its convergence on Fock states. Applications and potential physical implementations are also discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Coupling ; Deviation ; Evolution ; Fock state ; Harmonic oscillators ; Mathematical analysis ; Resonant frequencies ; Rotation</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2982466006?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Heib, Tim</creatorcontrib><creatorcontrib>Lageyre, Paul</creatorcontrib><creatorcontrib>Ferreri, Alessandro</creatorcontrib><creatorcontrib>Wilhelm, Frank K</creatorcontrib><creatorcontrib>Paraoanu, G S</creatorcontrib><creatorcontrib>Burgarth, Daniel</creatorcontrib><creatorcontrib>Schell, Andreas Wolfgang</creatorcontrib><creatorcontrib>Bruschi, David Edward</creatorcontrib><title>On the validity of the rotating wave approximation for coupled harmonic oscillators</title><title>arXiv.org</title><description>In this work we study the validity of the rotating wave approximation of an ideal system composed of two harmonic oscillators evolving with a quadratic Hamiltonian and arbitrarily strong interaction. We solve the dynamics analytically by employing tools from symplectic geometry. We focus on systems with initial Gaussian states and quantify exactly the deviation between the state obtained through the rotating approximation and the state obtained through the full evolution, therefore providing an answer for all values of the coupling. We find that the squeezing present in the full Hamiltonian and in the initial state governs the deviation from the approximated evolution. Furthermore, we also show that the rotating wave approximation is recovered for resonant frequencies and vanishing coupling to frequency ratio. Finally, we give a general proof of the rotating wave approximation and estimate its convergence on Fock states. Applications and potential physical implementations are also discussed.</description><subject>Approximation</subject><subject>Coupling</subject><subject>Deviation</subject><subject>Evolution</subject><subject>Fock state</subject><subject>Harmonic oscillators</subject><subject>Mathematical analysis</subject><subject>Resonant frequencies</subject><subject>Rotation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjNEKgjAYhUcQJOU7_NC1sDZddh1Fd13UvQydOpn7bZtWb59ED9DV4Xzn4yxIxDjfJXnK2IrE3neUUib2LMt4RG5XC6FVMEmjKx3egPW3OwwyaNvAU04K5DA4fOl-RmihRgcljoNRFbTS9Wh1CehLbYwM6PyGLGtpvIp_uSbb8-l-vCTzyWNUPhQdjs7OU8EOOUuFoFTw_6wPhRdA4Q</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>Heib, Tim</creator><creator>Lageyre, Paul</creator><creator>Ferreri, Alessandro</creator><creator>Wilhelm, Frank K</creator><creator>Paraoanu, G S</creator><creator>Burgarth, Daniel</creator><creator>Schell, Andreas Wolfgang</creator><creator>Bruschi, David Edward</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240322</creationdate><title>On the validity of the rotating wave approximation for coupled harmonic oscillators</title><author>Heib, Tim ; Lageyre, Paul ; Ferreri, Alessandro ; Wilhelm, Frank K ; Paraoanu, G S ; Burgarth, Daniel ; Schell, Andreas Wolfgang ; Bruschi, David Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29824660063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Coupling</topic><topic>Deviation</topic><topic>Evolution</topic><topic>Fock state</topic><topic>Harmonic oscillators</topic><topic>Mathematical analysis</topic><topic>Resonant frequencies</topic><topic>Rotation</topic><toplevel>online_resources</toplevel><creatorcontrib>Heib, Tim</creatorcontrib><creatorcontrib>Lageyre, Paul</creatorcontrib><creatorcontrib>Ferreri, Alessandro</creatorcontrib><creatorcontrib>Wilhelm, Frank K</creatorcontrib><creatorcontrib>Paraoanu, G S</creatorcontrib><creatorcontrib>Burgarth, Daniel</creatorcontrib><creatorcontrib>Schell, Andreas Wolfgang</creatorcontrib><creatorcontrib>Bruschi, David Edward</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heib, Tim</au><au>Lageyre, Paul</au><au>Ferreri, Alessandro</au><au>Wilhelm, Frank K</au><au>Paraoanu, G S</au><au>Burgarth, Daniel</au><au>Schell, Andreas Wolfgang</au><au>Bruschi, David Edward</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the validity of the rotating wave approximation for coupled harmonic oscillators</atitle><jtitle>arXiv.org</jtitle><date>2024-03-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work we study the validity of the rotating wave approximation of an ideal system composed of two harmonic oscillators evolving with a quadratic Hamiltonian and arbitrarily strong interaction. We solve the dynamics analytically by employing tools from symplectic geometry. We focus on systems with initial Gaussian states and quantify exactly the deviation between the state obtained through the rotating approximation and the state obtained through the full evolution, therefore providing an answer for all values of the coupling. We find that the squeezing present in the full Hamiltonian and in the initial state governs the deviation from the approximated evolution. Furthermore, we also show that the rotating wave approximation is recovered for resonant frequencies and vanishing coupling to frequency ratio. Finally, we give a general proof of the rotating wave approximation and estimate its convergence on Fock states. Applications and potential physical implementations are also discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2982466006 |
source | Publicly Available Content Database |
subjects | Approximation Coupling Deviation Evolution Fock state Harmonic oscillators Mathematical analysis Resonant frequencies Rotation |
title | On the validity of the rotating wave approximation for coupled harmonic oscillators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20validity%20of%20the%20rotating%20wave%20approximation%20for%20coupled%20harmonic%20oscillators&rft.jtitle=arXiv.org&rft.au=Heib,%20Tim&rft.date=2024-03-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2982466006%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29824660063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2982466006&rft_id=info:pmid/&rfr_iscdi=true |