Loading…

Exploring climate extremes in Brazil’s Legal Amazon

In this study, we evaluated extreme climate indicators for precipitation and temperature in the Brazilian Legal Amazon (BLA) from 1961 to 2021. Data from 38 National Institute of Meteorology (INMET) weather stations with a record failure rate less than 12% were used, and RClimDex software and the Ma...

Full description

Saved in:
Bibliographic Details
Published in:Stochastic environmental research and risk assessment 2024-04, Vol.38 (4), p.1403-1422
Main Authors: de Bodas Terassi, Paulo Miguel, Galvani, Emerson, Gobo, João Paulo Assis, da Silva Oscar-Júnior, Antonio Carlos, Luiz-Silva, Wanderson, Sobral, Bruno Serafini, de Gois, Givanildo, Biffi, Vitor Hugo Rosa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-a8d7264b0200acf05d95ad2a1064e016f82f5a91a41ec5082531eab615a2d4e3
container_end_page 1422
container_issue 4
container_start_page 1403
container_title Stochastic environmental research and risk assessment
container_volume 38
creator de Bodas Terassi, Paulo Miguel
Galvani, Emerson
Gobo, João Paulo Assis
da Silva Oscar-Júnior, Antonio Carlos
Luiz-Silva, Wanderson
Sobral, Bruno Serafini
de Gois, Givanildo
Biffi, Vitor Hugo Rosa
description In this study, we evaluated extreme climate indicators for precipitation and temperature in the Brazilian Legal Amazon (BLA) from 1961 to 2021. Data from 38 National Institute of Meteorology (INMET) weather stations with a record failure rate less than 12% were used, and RClimDex software and the Mann–Kendall test, Pettitt test, standard normal homogeneity test (SNHT), and Buishand test were employed to analyse the data. The results showed increased extreme rainfall events, including the annual total rainfall divided by wet days (SDII). More frequent discontinuities were observed in the 1980s (SNHT) and 1990s (Pettitt and Buishand tests). The extreme temperature climate indicators also significantly increased, particularly in the 1990s. These increases are likely linked to changes in local climate conditions due to agricultural expansion, intensified industrial activities, and regional urbanization. This study underscores the need for proactive measures to curb illegal deforestation and reduce CO 2 emissions and further research to better understand and mitigate the adverse impacts of these changes on the BLA environment and local communities. Graphical abstract
doi_str_mv 10.1007/s00477-023-02634-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2983468369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2983468369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a8d7264b0200acf05d95ad2a1064e016f82f5a91a41ec5082531eab615a2d4e3</originalsourceid><addsrcrecordid>eNp9kM1Kw1AQhS-iYK2-gKuA6-jc_2RZS_2BgJvuL9NkUlLSJN6bQu3K1_D1fBJTI7pzMcwszjnD-Ri75nDLAexdAFDWxiDkMEaq2J6wCVfSxFLo9PT3VnDOLkLYAHBrtZowvdh3deurZh3ldbXFniLa9562FKKqie49Hqr68_0jRBmtsY5mWzy0zSU7K7EOdPWzp2z5sFjOn-Ls5fF5PsviXFjoY0wKK4xagQDAvARdpBoLgRyMIuCmTESpMeWoOOUaEqElJ1wZrlEUiuSU3YyxnW9fdxR6t2l3vhk-OpEmUplEmnRQiVGV-zYET6Xr_NDEvzkO7kjHjXTcQMd903F2MMnRFLpjefJ_0f-4vgB312cE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2983468369</pqid></control><display><type>article</type><title>Exploring climate extremes in Brazil’s Legal Amazon</title><source>Springer Link</source><creator>de Bodas Terassi, Paulo Miguel ; Galvani, Emerson ; Gobo, João Paulo Assis ; da Silva Oscar-Júnior, Antonio Carlos ; Luiz-Silva, Wanderson ; Sobral, Bruno Serafini ; de Gois, Givanildo ; Biffi, Vitor Hugo Rosa</creator><creatorcontrib>de Bodas Terassi, Paulo Miguel ; Galvani, Emerson ; Gobo, João Paulo Assis ; da Silva Oscar-Júnior, Antonio Carlos ; Luiz-Silva, Wanderson ; Sobral, Bruno Serafini ; de Gois, Givanildo ; Biffi, Vitor Hugo Rosa</creatorcontrib><description>In this study, we evaluated extreme climate indicators for precipitation and temperature in the Brazilian Legal Amazon (BLA) from 1961 to 2021. Data from 38 National Institute of Meteorology (INMET) weather stations with a record failure rate less than 12% were used, and RClimDex software and the Mann–Kendall test, Pettitt test, standard normal homogeneity test (SNHT), and Buishand test were employed to analyse the data. The results showed increased extreme rainfall events, including the annual total rainfall divided by wet days (SDII). More frequent discontinuities were observed in the 1980s (SNHT) and 1990s (Pettitt and Buishand tests). The extreme temperature climate indicators also significantly increased, particularly in the 1990s. These increases are likely linked to changes in local climate conditions due to agricultural expansion, intensified industrial activities, and regional urbanization. This study underscores the need for proactive measures to curb illegal deforestation and reduce CO 2 emissions and further research to better understand and mitigate the adverse impacts of these changes on the BLA environment and local communities. Graphical abstract</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-023-02634-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural expansion ; Aquatic Pollution ; Biodiversity ; Carbon dioxide ; Carbon dioxide emissions ; Chemistry and Earth Sciences ; Climate ; Climate change ; Climatic conditions ; Computational Intelligence ; Computer Science ; Deforestation ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environment ; Environmental research ; Extreme values ; Extreme weather ; Forests ; Homogeneity ; Indicators ; Industrial areas ; Local communities ; Math. Appl. in Environmental Science ; Meteorology ; Missing data ; Original Paper ; Physics ; Precipitation ; Probability Theory and Stochastic Processes ; Rain ; Rainfall ; Risk assessment ; Statistics for Engineering ; Time series ; Trends ; Urbanization ; Waste Water Technology ; Water Management ; Water Pollution Control ; Weather stations</subject><ispartof>Stochastic environmental research and risk assessment, 2024-04, Vol.38 (4), p.1403-1422</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a8d7264b0200acf05d95ad2a1064e016f82f5a91a41ec5082531eab615a2d4e3</cites><orcidid>0000-0002-5773-7842 ; 0000-0003-4461-2570 ; 0000-0002-8438-2055 ; 0000-0002-8184-0348 ; 0000-0002-8082-5963 ; 0000-0001-8589-7301 ; 0000-0002-2583-5245 ; 0000-0001-9751-5884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>de Bodas Terassi, Paulo Miguel</creatorcontrib><creatorcontrib>Galvani, Emerson</creatorcontrib><creatorcontrib>Gobo, João Paulo Assis</creatorcontrib><creatorcontrib>da Silva Oscar-Júnior, Antonio Carlos</creatorcontrib><creatorcontrib>Luiz-Silva, Wanderson</creatorcontrib><creatorcontrib>Sobral, Bruno Serafini</creatorcontrib><creatorcontrib>de Gois, Givanildo</creatorcontrib><creatorcontrib>Biffi, Vitor Hugo Rosa</creatorcontrib><title>Exploring climate extremes in Brazil’s Legal Amazon</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>In this study, we evaluated extreme climate indicators for precipitation and temperature in the Brazilian Legal Amazon (BLA) from 1961 to 2021. Data from 38 National Institute of Meteorology (INMET) weather stations with a record failure rate less than 12% were used, and RClimDex software and the Mann–Kendall test, Pettitt test, standard normal homogeneity test (SNHT), and Buishand test were employed to analyse the data. The results showed increased extreme rainfall events, including the annual total rainfall divided by wet days (SDII). More frequent discontinuities were observed in the 1980s (SNHT) and 1990s (Pettitt and Buishand tests). The extreme temperature climate indicators also significantly increased, particularly in the 1990s. These increases are likely linked to changes in local climate conditions due to agricultural expansion, intensified industrial activities, and regional urbanization. This study underscores the need for proactive measures to curb illegal deforestation and reduce CO 2 emissions and further research to better understand and mitigate the adverse impacts of these changes on the BLA environment and local communities. Graphical abstract</description><subject>Agricultural expansion</subject><subject>Aquatic Pollution</subject><subject>Biodiversity</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Chemistry and Earth Sciences</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Deforestation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Environmental research</subject><subject>Extreme values</subject><subject>Extreme weather</subject><subject>Forests</subject><subject>Homogeneity</subject><subject>Indicators</subject><subject>Industrial areas</subject><subject>Local communities</subject><subject>Math. Appl. in Environmental Science</subject><subject>Meteorology</subject><subject>Missing data</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Precipitation</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Risk assessment</subject><subject>Statistics for Engineering</subject><subject>Time series</subject><subject>Trends</subject><subject>Urbanization</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Weather stations</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw1AQhS-iYK2-gKuA6-jc_2RZS_2BgJvuL9NkUlLSJN6bQu3K1_D1fBJTI7pzMcwszjnD-Ri75nDLAexdAFDWxiDkMEaq2J6wCVfSxFLo9PT3VnDOLkLYAHBrtZowvdh3deurZh3ldbXFniLa9562FKKqie49Hqr68_0jRBmtsY5mWzy0zSU7K7EOdPWzp2z5sFjOn-Ls5fF5PsviXFjoY0wKK4xagQDAvARdpBoLgRyMIuCmTESpMeWoOOUaEqElJ1wZrlEUiuSU3YyxnW9fdxR6t2l3vhk-OpEmUplEmnRQiVGV-zYET6Xr_NDEvzkO7kjHjXTcQMd903F2MMnRFLpjefJ_0f-4vgB312cE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>de Bodas Terassi, Paulo Miguel</creator><creator>Galvani, Emerson</creator><creator>Gobo, João Paulo Assis</creator><creator>da Silva Oscar-Júnior, Antonio Carlos</creator><creator>Luiz-Silva, Wanderson</creator><creator>Sobral, Bruno Serafini</creator><creator>de Gois, Givanildo</creator><creator>Biffi, Vitor Hugo Rosa</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5773-7842</orcidid><orcidid>https://orcid.org/0000-0003-4461-2570</orcidid><orcidid>https://orcid.org/0000-0002-8438-2055</orcidid><orcidid>https://orcid.org/0000-0002-8184-0348</orcidid><orcidid>https://orcid.org/0000-0002-8082-5963</orcidid><orcidid>https://orcid.org/0000-0001-8589-7301</orcidid><orcidid>https://orcid.org/0000-0002-2583-5245</orcidid><orcidid>https://orcid.org/0000-0001-9751-5884</orcidid></search><sort><creationdate>20240401</creationdate><title>Exploring climate extremes in Brazil’s Legal Amazon</title><author>de Bodas Terassi, Paulo Miguel ; Galvani, Emerson ; Gobo, João Paulo Assis ; da Silva Oscar-Júnior, Antonio Carlos ; Luiz-Silva, Wanderson ; Sobral, Bruno Serafini ; de Gois, Givanildo ; Biffi, Vitor Hugo Rosa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a8d7264b0200acf05d95ad2a1064e016f82f5a91a41ec5082531eab615a2d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural expansion</topic><topic>Aquatic Pollution</topic><topic>Biodiversity</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Chemistry and Earth Sciences</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Deforestation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Environmental research</topic><topic>Extreme values</topic><topic>Extreme weather</topic><topic>Forests</topic><topic>Homogeneity</topic><topic>Indicators</topic><topic>Industrial areas</topic><topic>Local communities</topic><topic>Math. Appl. in Environmental Science</topic><topic>Meteorology</topic><topic>Missing data</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Precipitation</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Risk assessment</topic><topic>Statistics for Engineering</topic><topic>Time series</topic><topic>Trends</topic><topic>Urbanization</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Bodas Terassi, Paulo Miguel</creatorcontrib><creatorcontrib>Galvani, Emerson</creatorcontrib><creatorcontrib>Gobo, João Paulo Assis</creatorcontrib><creatorcontrib>da Silva Oscar-Júnior, Antonio Carlos</creatorcontrib><creatorcontrib>Luiz-Silva, Wanderson</creatorcontrib><creatorcontrib>Sobral, Bruno Serafini</creatorcontrib><creatorcontrib>de Gois, Givanildo</creatorcontrib><creatorcontrib>Biffi, Vitor Hugo Rosa</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Bodas Terassi, Paulo Miguel</au><au>Galvani, Emerson</au><au>Gobo, João Paulo Assis</au><au>da Silva Oscar-Júnior, Antonio Carlos</au><au>Luiz-Silva, Wanderson</au><au>Sobral, Bruno Serafini</au><au>de Gois, Givanildo</au><au>Biffi, Vitor Hugo Rosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring climate extremes in Brazil’s Legal Amazon</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>38</volume><issue>4</issue><spage>1403</spage><epage>1422</epage><pages>1403-1422</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>In this study, we evaluated extreme climate indicators for precipitation and temperature in the Brazilian Legal Amazon (BLA) from 1961 to 2021. Data from 38 National Institute of Meteorology (INMET) weather stations with a record failure rate less than 12% were used, and RClimDex software and the Mann–Kendall test, Pettitt test, standard normal homogeneity test (SNHT), and Buishand test were employed to analyse the data. The results showed increased extreme rainfall events, including the annual total rainfall divided by wet days (SDII). More frequent discontinuities were observed in the 1980s (SNHT) and 1990s (Pettitt and Buishand tests). The extreme temperature climate indicators also significantly increased, particularly in the 1990s. These increases are likely linked to changes in local climate conditions due to agricultural expansion, intensified industrial activities, and regional urbanization. This study underscores the need for proactive measures to curb illegal deforestation and reduce CO 2 emissions and further research to better understand and mitigate the adverse impacts of these changes on the BLA environment and local communities. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-023-02634-7</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5773-7842</orcidid><orcidid>https://orcid.org/0000-0003-4461-2570</orcidid><orcidid>https://orcid.org/0000-0002-8438-2055</orcidid><orcidid>https://orcid.org/0000-0002-8184-0348</orcidid><orcidid>https://orcid.org/0000-0002-8082-5963</orcidid><orcidid>https://orcid.org/0000-0001-8589-7301</orcidid><orcidid>https://orcid.org/0000-0002-2583-5245</orcidid><orcidid>https://orcid.org/0000-0001-9751-5884</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2024-04, Vol.38 (4), p.1403-1422
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_journals_2983468369
source Springer Link
subjects Agricultural expansion
Aquatic Pollution
Biodiversity
Carbon dioxide
Carbon dioxide emissions
Chemistry and Earth Sciences
Climate
Climate change
Climatic conditions
Computational Intelligence
Computer Science
Deforestation
Earth and Environmental Science
Earth Sciences
Ecosystems
Environment
Environmental research
Extreme values
Extreme weather
Forests
Homogeneity
Indicators
Industrial areas
Local communities
Math. Appl. in Environmental Science
Meteorology
Missing data
Original Paper
Physics
Precipitation
Probability Theory and Stochastic Processes
Rain
Rainfall
Risk assessment
Statistics for Engineering
Time series
Trends
Urbanization
Waste Water Technology
Water Management
Water Pollution Control
Weather stations
title Exploring climate extremes in Brazil’s Legal Amazon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20climate%20extremes%20in%20Brazil%E2%80%99s%20Legal%20Amazon&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=de%20Bodas%20Terassi,%20Paulo%20Miguel&rft.date=2024-04-01&rft.volume=38&rft.issue=4&rft.spage=1403&rft.epage=1422&rft.pages=1403-1422&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-023-02634-7&rft_dat=%3Cproquest_cross%3E2983468369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-a8d7264b0200acf05d95ad2a1064e016f82f5a91a41ec5082531eab615a2d4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2983468369&rft_id=info:pmid/&rfr_iscdi=true