Loading…

A framework and method for equipment digital twin dynamic evolution based on IExATCN

Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dyn...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent manufacturing 2024-04, Vol.35 (4), p.1571-1583
Main Authors: Wang, Kunyu, Zhang, Lin, Jia, Zidi, Cheng, Hongbo, Lu, Han, Cui, Jin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3
container_end_page 1583
container_issue 4
container_start_page 1571
container_title Journal of intelligent manufacturing
container_volume 35
creator Wang, Kunyu
Zhang, Lin
Jia, Zidi
Cheng, Hongbo
Lu, Han
Cui, Jin
description Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets.
doi_str_mv 10.1007/s10845-023-02125-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2984524628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2984524628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwB5gsMQdsx8-Jx6oqUKmCpcyWE9slpYlbOwH67zEEiY3h6W64uyd9CF1TcksJKe4iJSWHjLA8HWXJnaAJhYJlJeVwiiZEgsgAKJyjixi3hBBZCjpB6xl2Qbf2w4c3rDuDW9u_eoOdD9gehmbf2q7Hptk0vd7h_qPpsDl2um1qbN_9bugb3-FKR2twMsvF52w9f7pEZ07vor361Sl6uV-s54_Z6vlhOZ-tspoVpM9KUlluBa8qcADgjBOQi5rXTHIDVhurJQemoZJa04JWjnJW5lIIYkQuq3yKbsbdffCHwcZebf0QuvRSMZl4MC5SforYmKqDjzFYp_ahaXU4KkrUNz010lOJnvqhp0gq5WMppnC3seFv-p_WF7o9ceo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2984524628</pqid></control><display><type>article</type><title>A framework and method for equipment digital twin dynamic evolution based on IExATCN</title><source>Springer Nature</source><creator>Wang, Kunyu ; Zhang, Lin ; Jia, Zidi ; Cheng, Hongbo ; Lu, Han ; Cui, Jin</creator><creatorcontrib>Wang, Kunyu ; Zhang, Lin ; Jia, Zidi ; Cheng, Hongbo ; Lu, Han ; Cui, Jin</creatorcontrib><description>Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-023-02125-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Behavior ; Black boxes ; Business and Management ; Control ; Data acquisition ; Design ; Digital twins ; Evolutionary algorithms ; Machines ; Manufacturing ; Mechatronics ; Processes ; Production ; R&amp;D ; Research &amp; development ; Robotics ; Simulation</subject><ispartof>Journal of intelligent manufacturing, 2024-04, Vol.35 (4), p.1571-1583</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3</cites><orcidid>0000-0003-1989-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Kunyu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Jia, Zidi</creatorcontrib><creatorcontrib>Cheng, Hongbo</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Cui, Jin</creatorcontrib><title>A framework and method for equipment digital twin dynamic evolution based on IExATCN</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets.</description><subject>Accuracy</subject><subject>Behavior</subject><subject>Black boxes</subject><subject>Business and Management</subject><subject>Control</subject><subject>Data acquisition</subject><subject>Design</subject><subject>Digital twins</subject><subject>Evolutionary algorithms</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Processes</subject><subject>Production</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Robotics</subject><subject>Simulation</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqXwB5gsMQdsx8-Jx6oqUKmCpcyWE9slpYlbOwH67zEEiY3h6W64uyd9CF1TcksJKe4iJSWHjLA8HWXJnaAJhYJlJeVwiiZEgsgAKJyjixi3hBBZCjpB6xl2Qbf2w4c3rDuDW9u_eoOdD9gehmbf2q7Hptk0vd7h_qPpsDl2um1qbN_9bugb3-FKR2twMsvF52w9f7pEZ07vor361Sl6uV-s54_Z6vlhOZ-tspoVpM9KUlluBa8qcADgjBOQi5rXTHIDVhurJQemoZJa04JWjnJW5lIIYkQuq3yKbsbdffCHwcZebf0QuvRSMZl4MC5SforYmKqDjzFYp_ahaXU4KkrUNz010lOJnvqhp0gq5WMppnC3seFv-p_WF7o9ceo</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wang, Kunyu</creator><creator>Zhang, Lin</creator><creator>Jia, Zidi</creator><creator>Cheng, Hongbo</creator><creator>Lu, Han</creator><creator>Cui, Jin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1989-6102</orcidid></search><sort><creationdate>20240401</creationdate><title>A framework and method for equipment digital twin dynamic evolution based on IExATCN</title><author>Wang, Kunyu ; Zhang, Lin ; Jia, Zidi ; Cheng, Hongbo ; Lu, Han ; Cui, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Behavior</topic><topic>Black boxes</topic><topic>Business and Management</topic><topic>Control</topic><topic>Data acquisition</topic><topic>Design</topic><topic>Digital twins</topic><topic>Evolutionary algorithms</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Processes</topic><topic>Production</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Robotics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kunyu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Jia, Zidi</creatorcontrib><creatorcontrib>Cheng, Hongbo</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Cui, Jin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kunyu</au><au>Zhang, Lin</au><au>Jia, Zidi</au><au>Cheng, Hongbo</au><au>Lu, Han</au><au>Cui, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework and method for equipment digital twin dynamic evolution based on IExATCN</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>1571</spage><epage>1583</epage><pages>1571-1583</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-023-02125-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1989-6102</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2024-04, Vol.35 (4), p.1571-1583
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_2984524628
source Springer Nature
subjects Accuracy
Behavior
Black boxes
Business and Management
Control
Data acquisition
Design
Digital twins
Evolutionary algorithms
Machines
Manufacturing
Mechatronics
Processes
Production
R&D
Research & development
Robotics
Simulation
title A framework and method for equipment digital twin dynamic evolution based on IExATCN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20and%20method%20for%20equipment%20digital%20twin%20dynamic%20evolution%20based%20on%20IExATCN&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Wang,%20Kunyu&rft.date=2024-04-01&rft.volume=35&rft.issue=4&rft.spage=1571&rft.epage=1583&rft.pages=1571-1583&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-023-02125-0&rft_dat=%3Cproquest_cross%3E2984524628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2984524628&rft_id=info:pmid/&rfr_iscdi=true