Loading…
A framework and method for equipment digital twin dynamic evolution based on IExATCN
Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dyn...
Saved in:
Published in: | Journal of intelligent manufacturing 2024-04, Vol.35 (4), p.1571-1583 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3 |
container_end_page | 1583 |
container_issue | 4 |
container_start_page | 1571 |
container_title | Journal of intelligent manufacturing |
container_volume | 35 |
creator | Wang, Kunyu Zhang, Lin Jia, Zidi Cheng, Hongbo Lu, Han Cui, Jin |
description | Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets. |
doi_str_mv | 10.1007/s10845-023-02125-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2984524628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2984524628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwB5gsMQdsx8-Jx6oqUKmCpcyWE9slpYlbOwH67zEEiY3h6W64uyd9CF1TcksJKe4iJSWHjLA8HWXJnaAJhYJlJeVwiiZEgsgAKJyjixi3hBBZCjpB6xl2Qbf2w4c3rDuDW9u_eoOdD9gehmbf2q7Hptk0vd7h_qPpsDl2um1qbN_9bugb3-FKR2twMsvF52w9f7pEZ07vor361Sl6uV-s54_Z6vlhOZ-tspoVpM9KUlluBa8qcADgjBOQi5rXTHIDVhurJQemoZJa04JWjnJW5lIIYkQuq3yKbsbdffCHwcZebf0QuvRSMZl4MC5SforYmKqDjzFYp_ahaXU4KkrUNz010lOJnvqhp0gq5WMppnC3seFv-p_WF7o9ceo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2984524628</pqid></control><display><type>article</type><title>A framework and method for equipment digital twin dynamic evolution based on IExATCN</title><source>Springer Nature</source><creator>Wang, Kunyu ; Zhang, Lin ; Jia, Zidi ; Cheng, Hongbo ; Lu, Han ; Cui, Jin</creator><creatorcontrib>Wang, Kunyu ; Zhang, Lin ; Jia, Zidi ; Cheng, Hongbo ; Lu, Han ; Cui, Jin</creatorcontrib><description>Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-023-02125-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Behavior ; Black boxes ; Business and Management ; Control ; Data acquisition ; Design ; Digital twins ; Evolutionary algorithms ; Machines ; Manufacturing ; Mechatronics ; Processes ; Production ; R&D ; Research & development ; Robotics ; Simulation</subject><ispartof>Journal of intelligent manufacturing, 2024-04, Vol.35 (4), p.1571-1583</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3</cites><orcidid>0000-0003-1989-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Kunyu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Jia, Zidi</creatorcontrib><creatorcontrib>Cheng, Hongbo</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Cui, Jin</creatorcontrib><title>A framework and method for equipment digital twin dynamic evolution based on IExATCN</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets.</description><subject>Accuracy</subject><subject>Behavior</subject><subject>Black boxes</subject><subject>Business and Management</subject><subject>Control</subject><subject>Data acquisition</subject><subject>Design</subject><subject>Digital twins</subject><subject>Evolutionary algorithms</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Processes</subject><subject>Production</subject><subject>R&D</subject><subject>Research & development</subject><subject>Robotics</subject><subject>Simulation</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqXwB5gsMQdsx8-Jx6oqUKmCpcyWE9slpYlbOwH67zEEiY3h6W64uyd9CF1TcksJKe4iJSWHjLA8HWXJnaAJhYJlJeVwiiZEgsgAKJyjixi3hBBZCjpB6xl2Qbf2w4c3rDuDW9u_eoOdD9gehmbf2q7Hptk0vd7h_qPpsDl2um1qbN_9bugb3-FKR2twMsvF52w9f7pEZ07vor361Sl6uV-s54_Z6vlhOZ-tspoVpM9KUlluBa8qcADgjBOQi5rXTHIDVhurJQemoZJa04JWjnJW5lIIYkQuq3yKbsbdffCHwcZebf0QuvRSMZl4MC5SforYmKqDjzFYp_ahaXU4KkrUNz010lOJnvqhp0gq5WMppnC3seFv-p_WF7o9ceo</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wang, Kunyu</creator><creator>Zhang, Lin</creator><creator>Jia, Zidi</creator><creator>Cheng, Hongbo</creator><creator>Lu, Han</creator><creator>Cui, Jin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1989-6102</orcidid></search><sort><creationdate>20240401</creationdate><title>A framework and method for equipment digital twin dynamic evolution based on IExATCN</title><author>Wang, Kunyu ; Zhang, Lin ; Jia, Zidi ; Cheng, Hongbo ; Lu, Han ; Cui, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Behavior</topic><topic>Black boxes</topic><topic>Business and Management</topic><topic>Control</topic><topic>Data acquisition</topic><topic>Design</topic><topic>Digital twins</topic><topic>Evolutionary algorithms</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Processes</topic><topic>Production</topic><topic>R&D</topic><topic>Research & development</topic><topic>Robotics</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kunyu</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Jia, Zidi</creatorcontrib><creatorcontrib>Cheng, Hongbo</creatorcontrib><creatorcontrib>Lu, Han</creatorcontrib><creatorcontrib>Cui, Jin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kunyu</au><au>Zhang, Lin</au><au>Jia, Zidi</au><au>Cheng, Hongbo</au><au>Lu, Han</au><au>Cui, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework and method for equipment digital twin dynamic evolution based on IExATCN</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>1571</spage><epage>1583</epage><pages>1571-1583</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Dynamic evolution is the most typical feature of a digital twin, making it different from a traditional digital model. Dynamic evolution is also the core technology for building equipment digital twins because it ensures consistency between physical space and virtual space. This paper proposes a dynamic evolution framework for black box equipment digital twins. The framework consists of three main parts: data acquisition and processing, an evolution triggering mechanism and an evolution algorithm. A formal description of the dynamic evolution of a black box digital twin is also given. Furthermore, by synthetically considering the computational accuracy and efficiency, we design an incremental external attention temporal convolution network (IExATCN) model to instantiate the proposed framework. Finally, the significance of digital twin dynamic evolution and the effectiveness of the IExATCN is verified by 3D equipment attitude estimation datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-023-02125-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1989-6102</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2024-04, Vol.35 (4), p.1571-1583 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_2984524628 |
source | Springer Nature |
subjects | Accuracy Behavior Black boxes Business and Management Control Data acquisition Design Digital twins Evolutionary algorithms Machines Manufacturing Mechatronics Processes Production R&D Research & development Robotics Simulation |
title | A framework and method for equipment digital twin dynamic evolution based on IExATCN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20and%20method%20for%20equipment%20digital%20twin%20dynamic%20evolution%20based%20on%20IExATCN&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Wang,%20Kunyu&rft.date=2024-04-01&rft.volume=35&rft.issue=4&rft.spage=1571&rft.epage=1583&rft.pages=1571-1583&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-023-02125-0&rft_dat=%3Cproquest_cross%3E2984524628%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-80be4e64bb5f555fdf6536c4c294d5eadea9452a5b9aa171bf142839660d639b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2984524628&rft_id=info:pmid/&rfr_iscdi=true |