Loading…
Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells
Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we...
Saved in:
Published in: | Nature energy 2024-03, Vol.9 (3), p.324-332 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393 |
container_end_page | 332 |
container_issue | 3 |
container_start_page | 324 |
container_title | Nature energy |
container_volume | 9 |
creator | Aqoma, Havid Lee, Sang-Hak Imran, Imil Fadli Hwang, Jin-Ha Lee, Su-Ho Jang, Sung-Yeon |
description | Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the
α
phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C.
The efficiency of perovskite quantum dot solar cells based on organic cations is relatively low. Aqoma et al. develop an alkyl ammonium iodide-based ligand exchange strategy for the replacement of the long-chain oleyl ligands and phase stabilization that enables 18.1%-efficiency solar cells. |
doi_str_mv | 10.1038/s41560-024-01450-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2985386642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2985386642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElXpD7CyxNowtuM8llXFS6rEBtaW44xbt0nc2gmifD0pRYIVs5lZnHtHOklyzeCWgSjuYspkBhR4SoGlEmh5lkw4yILmMs3O_9yXySzGDQDwknNZsEnyOW-2h4botvWdG1rifO1qpJWOWJPGrXRXE_wwa92tkMQ-6B5XB2J9IGu3WlO01hmHnTkQH0bYGWp073xHdhj8e9y6Hsl-0F0_dte-J9E3OhCDTROvkgurm4iznz1N3h7uXxdPdPny-LyYL6kRrOxpxnWZZmjzPNcGbC1MncmcM2m5AAmIthLIj8NkVTKokEHOEdIKU1aJUkyTm1PvLvj9gLFXGz-EbnypeFlIUWRZykeKnygTfIwBrdoF1-pwUAzUUbM6aVajZvWtWR2rxSkUR3g0FH6r_0l9AUnggZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2985386642</pqid></control><display><type>article</type><title>Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells</title><source>Alma/SFX Local Collection</source><creator>Aqoma, Havid ; Lee, Sang-Hak ; Imran, Imil Fadli ; Hwang, Jin-Ha ; Lee, Su-Ho ; Jang, Sung-Yeon</creator><creatorcontrib>Aqoma, Havid ; Lee, Sang-Hak ; Imran, Imil Fadli ; Hwang, Jin-Ha ; Lee, Su-Ho ; Jang, Sung-Yeon</creatorcontrib><description>Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the
α
phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C.
The efficiency of perovskite quantum dot solar cells based on organic cations is relatively low. Aqoma et al. develop an alkyl ammonium iodide-based ligand exchange strategy for the replacement of the long-chain oleyl ligands and phase stabilization that enables 18.1%-efficiency solar cells.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-024-01450-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299 ; 639/4077/909/4101/4096/946 ; Acetic acid ; Ammonium ; Cations ; Economics and Management ; Efficiency ; Energy ; Energy gap ; Energy Policy ; Energy Storage ; Energy Systems ; Exchanging ; Iodides ; Lead compounds ; Ligands ; Metal halides ; Methyl acetate ; Perovskites ; Photovoltaic cells ; Quantum dots ; Renewable and Green Energy ; Solar cells ; Stability</subject><ispartof>Nature energy, 2024-03, Vol.9 (3), p.324-332</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393</citedby><cites>FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393</cites><orcidid>0000-0003-1534-4837 ; 0000-0002-4225-3167 ; 0000-0001-5674-9908 ; 0009-0003-9049-3047 ; 0000-0001-9443-8641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Aqoma, Havid</creatorcontrib><creatorcontrib>Lee, Sang-Hak</creatorcontrib><creatorcontrib>Imran, Imil Fadli</creatorcontrib><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><creatorcontrib>Lee, Su-Ho</creatorcontrib><creatorcontrib>Jang, Sung-Yeon</creatorcontrib><title>Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the
α
phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C.
The efficiency of perovskite quantum dot solar cells based on organic cations is relatively low. Aqoma et al. develop an alkyl ammonium iodide-based ligand exchange strategy for the replacement of the long-chain oleyl ligands and phase stabilization that enables 18.1%-efficiency solar cells.</description><subject>639/301/299</subject><subject>639/4077/909/4101/4096/946</subject><subject>Acetic acid</subject><subject>Ammonium</subject><subject>Cations</subject><subject>Economics and Management</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Exchanging</subject><subject>Iodides</subject><subject>Lead compounds</subject><subject>Ligands</subject><subject>Metal halides</subject><subject>Methyl acetate</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Renewable and Green Energy</subject><subject>Solar cells</subject><subject>Stability</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElXpD7CyxNowtuM8llXFS6rEBtaW44xbt0nc2gmifD0pRYIVs5lZnHtHOklyzeCWgSjuYspkBhR4SoGlEmh5lkw4yILmMs3O_9yXySzGDQDwknNZsEnyOW-2h4botvWdG1rifO1qpJWOWJPGrXRXE_wwa92tkMQ-6B5XB2J9IGu3WlO01hmHnTkQH0bYGWp073xHdhj8e9y6Hsl-0F0_dte-J9E3OhCDTROvkgurm4iznz1N3h7uXxdPdPny-LyYL6kRrOxpxnWZZmjzPNcGbC1MncmcM2m5AAmIthLIj8NkVTKokEHOEdIKU1aJUkyTm1PvLvj9gLFXGz-EbnypeFlIUWRZykeKnygTfIwBrdoF1-pwUAzUUbM6aVajZvWtWR2rxSkUR3g0FH6r_0l9AUnggZc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Aqoma, Havid</creator><creator>Lee, Sang-Hak</creator><creator>Imran, Imil Fadli</creator><creator>Hwang, Jin-Ha</creator><creator>Lee, Su-Ho</creator><creator>Jang, Sung-Yeon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1534-4837</orcidid><orcidid>https://orcid.org/0000-0002-4225-3167</orcidid><orcidid>https://orcid.org/0000-0001-5674-9908</orcidid><orcidid>https://orcid.org/0009-0003-9049-3047</orcidid><orcidid>https://orcid.org/0000-0001-9443-8641</orcidid></search><sort><creationdate>20240301</creationdate><title>Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells</title><author>Aqoma, Havid ; Lee, Sang-Hak ; Imran, Imil Fadli ; Hwang, Jin-Ha ; Lee, Su-Ho ; Jang, Sung-Yeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/299</topic><topic>639/4077/909/4101/4096/946</topic><topic>Acetic acid</topic><topic>Ammonium</topic><topic>Cations</topic><topic>Economics and Management</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Exchanging</topic><topic>Iodides</topic><topic>Lead compounds</topic><topic>Ligands</topic><topic>Metal halides</topic><topic>Methyl acetate</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Renewable and Green Energy</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aqoma, Havid</creatorcontrib><creatorcontrib>Lee, Sang-Hak</creatorcontrib><creatorcontrib>Imran, Imil Fadli</creatorcontrib><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><creatorcontrib>Lee, Su-Ho</creatorcontrib><creatorcontrib>Jang, Sung-Yeon</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aqoma, Havid</au><au>Lee, Sang-Hak</au><au>Imran, Imil Fadli</au><au>Hwang, Jin-Ha</au><au>Lee, Su-Ho</au><au>Jang, Sung-Yeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>9</volume><issue>3</issue><spage>324</spage><epage>332</epage><pages>324-332</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the
α
phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C.
The efficiency of perovskite quantum dot solar cells based on organic cations is relatively low. Aqoma et al. develop an alkyl ammonium iodide-based ligand exchange strategy for the replacement of the long-chain oleyl ligands and phase stabilization that enables 18.1%-efficiency solar cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-024-01450-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1534-4837</orcidid><orcidid>https://orcid.org/0000-0002-4225-3167</orcidid><orcidid>https://orcid.org/0000-0001-5674-9908</orcidid><orcidid>https://orcid.org/0009-0003-9049-3047</orcidid><orcidid>https://orcid.org/0000-0001-9443-8641</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2024-03, Vol.9 (3), p.324-332 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_2985386642 |
source | Alma/SFX Local Collection |
subjects | 639/301/299 639/4077/909/4101/4096/946 Acetic acid Ammonium Cations Economics and Management Efficiency Energy Energy gap Energy Policy Energy Storage Energy Systems Exchanging Iodides Lead compounds Ligands Metal halides Methyl acetate Perovskites Photovoltaic cells Quantum dots Renewable and Green Energy Solar cells Stability |
title | Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkyl%20ammonium%20iodide-based%20ligand%20exchange%20strategy%20for%20high-efficiency%20organic-cation%20perovskite%20quantum%20dot%20solar%20cells&rft.jtitle=Nature%20energy&rft.au=Aqoma,%20Havid&rft.date=2024-03-01&rft.volume=9&rft.issue=3&rft.spage=324&rft.epage=332&rft.pages=324-332&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-024-01450-9&rft_dat=%3Cproquest_cross%3E2985386642%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2985386642&rft_id=info:pmid/&rfr_iscdi=true |