Loading…

Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells

Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we...

Full description

Saved in:
Bibliographic Details
Published in:Nature energy 2024-03, Vol.9 (3), p.324-332
Main Authors: Aqoma, Havid, Lee, Sang-Hak, Imran, Imil Fadli, Hwang, Jin-Ha, Lee, Su-Ho, Jang, Sung-Yeon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393
cites cdi_FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393
container_end_page 332
container_issue 3
container_start_page 324
container_title Nature energy
container_volume 9
creator Aqoma, Havid
Lee, Sang-Hak
Imran, Imil Fadli
Hwang, Jin-Ha
Lee, Su-Ho
Jang, Sung-Yeon
description Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the α phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C. The efficiency of perovskite quantum dot solar cells based on organic cations is relatively low. Aqoma et al. develop an alkyl ammonium iodide-based ligand exchange strategy for the replacement of the long-chain oleyl ligands and phase stabilization that enables 18.1%-efficiency solar cells.
doi_str_mv 10.1038/s41560-024-01450-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2985386642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2985386642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElXpD7CyxNowtuM8llXFS6rEBtaW44xbt0nc2gmifD0pRYIVs5lZnHtHOklyzeCWgSjuYspkBhR4SoGlEmh5lkw4yILmMs3O_9yXySzGDQDwknNZsEnyOW-2h4botvWdG1rifO1qpJWOWJPGrXRXE_wwa92tkMQ-6B5XB2J9IGu3WlO01hmHnTkQH0bYGWp073xHdhj8e9y6Hsl-0F0_dte-J9E3OhCDTROvkgurm4iznz1N3h7uXxdPdPny-LyYL6kRrOxpxnWZZmjzPNcGbC1MncmcM2m5AAmIthLIj8NkVTKokEHOEdIKU1aJUkyTm1PvLvj9gLFXGz-EbnypeFlIUWRZykeKnygTfIwBrdoF1-pwUAzUUbM6aVajZvWtWR2rxSkUR3g0FH6r_0l9AUnggZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2985386642</pqid></control><display><type>article</type><title>Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells</title><source>Alma/SFX Local Collection</source><creator>Aqoma, Havid ; Lee, Sang-Hak ; Imran, Imil Fadli ; Hwang, Jin-Ha ; Lee, Su-Ho ; Jang, Sung-Yeon</creator><creatorcontrib>Aqoma, Havid ; Lee, Sang-Hak ; Imran, Imil Fadli ; Hwang, Jin-Ha ; Lee, Su-Ho ; Jang, Sung-Yeon</creatorcontrib><description>Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the α phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C. The efficiency of perovskite quantum dot solar cells based on organic cations is relatively low. Aqoma et al. develop an alkyl ammonium iodide-based ligand exchange strategy for the replacement of the long-chain oleyl ligands and phase stabilization that enables 18.1%-efficiency solar cells.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-024-01450-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299 ; 639/4077/909/4101/4096/946 ; Acetic acid ; Ammonium ; Cations ; Economics and Management ; Efficiency ; Energy ; Energy gap ; Energy Policy ; Energy Storage ; Energy Systems ; Exchanging ; Iodides ; Lead compounds ; Ligands ; Metal halides ; Methyl acetate ; Perovskites ; Photovoltaic cells ; Quantum dots ; Renewable and Green Energy ; Solar cells ; Stability</subject><ispartof>Nature energy, 2024-03, Vol.9 (3), p.324-332</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393</citedby><cites>FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393</cites><orcidid>0000-0003-1534-4837 ; 0000-0002-4225-3167 ; 0000-0001-5674-9908 ; 0009-0003-9049-3047 ; 0000-0001-9443-8641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Aqoma, Havid</creatorcontrib><creatorcontrib>Lee, Sang-Hak</creatorcontrib><creatorcontrib>Imran, Imil Fadli</creatorcontrib><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><creatorcontrib>Lee, Su-Ho</creatorcontrib><creatorcontrib>Jang, Sung-Yeon</creatorcontrib><title>Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the α phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C. The efficiency of perovskite quantum dot solar cells based on organic cations is relatively low. Aqoma et al. develop an alkyl ammonium iodide-based ligand exchange strategy for the replacement of the long-chain oleyl ligands and phase stabilization that enables 18.1%-efficiency solar cells.</description><subject>639/301/299</subject><subject>639/4077/909/4101/4096/946</subject><subject>Acetic acid</subject><subject>Ammonium</subject><subject>Cations</subject><subject>Economics and Management</subject><subject>Efficiency</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Exchanging</subject><subject>Iodides</subject><subject>Lead compounds</subject><subject>Ligands</subject><subject>Metal halides</subject><subject>Methyl acetate</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Renewable and Green Energy</subject><subject>Solar cells</subject><subject>Stability</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElXpD7CyxNowtuM8llXFS6rEBtaW44xbt0nc2gmifD0pRYIVs5lZnHtHOklyzeCWgSjuYspkBhR4SoGlEmh5lkw4yILmMs3O_9yXySzGDQDwknNZsEnyOW-2h4botvWdG1rifO1qpJWOWJPGrXRXE_wwa92tkMQ-6B5XB2J9IGu3WlO01hmHnTkQH0bYGWp073xHdhj8e9y6Hsl-0F0_dte-J9E3OhCDTROvkgurm4iznz1N3h7uXxdPdPny-LyYL6kRrOxpxnWZZmjzPNcGbC1MncmcM2m5AAmIthLIj8NkVTKokEHOEdIKU1aJUkyTm1PvLvj9gLFXGz-EbnypeFlIUWRZykeKnygTfIwBrdoF1-pwUAzUUbM6aVajZvWtWR2rxSkUR3g0FH6r_0l9AUnggZc</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Aqoma, Havid</creator><creator>Lee, Sang-Hak</creator><creator>Imran, Imil Fadli</creator><creator>Hwang, Jin-Ha</creator><creator>Lee, Su-Ho</creator><creator>Jang, Sung-Yeon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1534-4837</orcidid><orcidid>https://orcid.org/0000-0002-4225-3167</orcidid><orcidid>https://orcid.org/0000-0001-5674-9908</orcidid><orcidid>https://orcid.org/0009-0003-9049-3047</orcidid><orcidid>https://orcid.org/0000-0001-9443-8641</orcidid></search><sort><creationdate>20240301</creationdate><title>Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells</title><author>Aqoma, Havid ; Lee, Sang-Hak ; Imran, Imil Fadli ; Hwang, Jin-Ha ; Lee, Su-Ho ; Jang, Sung-Yeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/301/299</topic><topic>639/4077/909/4101/4096/946</topic><topic>Acetic acid</topic><topic>Ammonium</topic><topic>Cations</topic><topic>Economics and Management</topic><topic>Efficiency</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Exchanging</topic><topic>Iodides</topic><topic>Lead compounds</topic><topic>Ligands</topic><topic>Metal halides</topic><topic>Methyl acetate</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Renewable and Green Energy</topic><topic>Solar cells</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aqoma, Havid</creatorcontrib><creatorcontrib>Lee, Sang-Hak</creatorcontrib><creatorcontrib>Imran, Imil Fadli</creatorcontrib><creatorcontrib>Hwang, Jin-Ha</creatorcontrib><creatorcontrib>Lee, Su-Ho</creatorcontrib><creatorcontrib>Jang, Sung-Yeon</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aqoma, Havid</au><au>Lee, Sang-Hak</au><au>Imran, Imil Fadli</au><au>Hwang, Jin-Ha</au><au>Lee, Su-Ho</au><au>Jang, Sung-Yeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>9</volume><issue>3</issue><spage>324</spage><epage>332</epage><pages>324-332</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Whereas lead halide perovskite-based colloidal quantum dots (PQDs) have emerged as a promising photoactive material for solar cells, the research to this point has predominantly focused on inorganic cation PQDs despite the fact that organic cation PQDs have more favourable bandgaps. In this work, we develop solar cells using narrow bandgap organic cation-based PQDs and demonstrate substantially higher efficiency compared with their inorganic counterparts. We employ an alkyl ammonium iodide-based ligand exchange strategy, which proves to be substantially more efficient in replacing the long-chain oleyl ligands than conventional methyl acetate-based ligand exchange while stabilizing the α phase of organic PQDs in ambient conditions. We show a solar cell with the organic cation PQDs with high certified quasi-steady-state efficiency of 18.1% with 1,200-h stability under illumination at open-circuit conditions and 300-h stability at 80 °C. The efficiency of perovskite quantum dot solar cells based on organic cations is relatively low. Aqoma et al. develop an alkyl ammonium iodide-based ligand exchange strategy for the replacement of the long-chain oleyl ligands and phase stabilization that enables 18.1%-efficiency solar cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-024-01450-9</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1534-4837</orcidid><orcidid>https://orcid.org/0000-0002-4225-3167</orcidid><orcidid>https://orcid.org/0000-0001-5674-9908</orcidid><orcidid>https://orcid.org/0009-0003-9049-3047</orcidid><orcidid>https://orcid.org/0000-0001-9443-8641</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2024-03, Vol.9 (3), p.324-332
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2985386642
source Alma/SFX Local Collection
subjects 639/301/299
639/4077/909/4101/4096/946
Acetic acid
Ammonium
Cations
Economics and Management
Efficiency
Energy
Energy gap
Energy Policy
Energy Storage
Energy Systems
Exchanging
Iodides
Lead compounds
Ligands
Metal halides
Methyl acetate
Perovskites
Photovoltaic cells
Quantum dots
Renewable and Green Energy
Solar cells
Stability
title Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkyl%20ammonium%20iodide-based%20ligand%20exchange%20strategy%20for%20high-efficiency%20organic-cation%20perovskite%20quantum%20dot%20solar%20cells&rft.jtitle=Nature%20energy&rft.au=Aqoma,%20Havid&rft.date=2024-03-01&rft.volume=9&rft.issue=3&rft.spage=324&rft.epage=332&rft.pages=324-332&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-024-01450-9&rft_dat=%3Cproquest_cross%3E2985386642%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-62a946ef777ac0fd3cd657215f23050eefb3e2222215b910be1072e04be41b393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2985386642&rft_id=info:pmid/&rfr_iscdi=true