Loading…
Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy
Multi-agent, collaborative sensor fusion is a vital component of a multi-national intelligence toolkit. In safety-critical and/or contested environments, adversaries may infiltrate and compromise a number of agents. We analyze state of the art multi-target tracking algorithms under this compromised...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | R Spencer Hallyburton Pajic, Miroslav |
description | Multi-agent, collaborative sensor fusion is a vital component of a multi-national intelligence toolkit. In safety-critical and/or contested environments, adversaries may infiltrate and compromise a number of agents. We analyze state of the art multi-target tracking algorithms under this compromised agent threat model. We prove that the track existence probability test ("track score") is significantly vulnerable to even small numbers of adversaries. To add security awareness, we design a trust estimation framework using hierarchical Bayesian updating. Our framework builds beliefs of trust on tracks and agents by mapping sensor measurements to trust pseudomeasurements (PSMs) and incorporating prior trust beliefs in a Bayesian context. In case studies, our trust estimation algorithm accurately estimates the trustworthiness of tracks/agents, subject to observability limitations. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2986606746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2986606746</sourcerecordid><originalsourceid>FETCH-proquest_journals_29866067463</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsSkTetmLYpLt-4lxVRTYq7mR-jb6-ADOJ3hOwuSMM53WZUztiKp9xOllImSFQVPyOEoZ-W1tNCqcMerhxEddC76ANpCg8bIAZ0M-q2gjSborL4pG6COAS0-5g1ZjtJ4lf66JtvzqWsu2dPhKyof-gmjs1_q2b4SgooyF_y_6wMvrjkb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986606746</pqid></control><display><type>article</type><title>Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>R Spencer Hallyburton ; Pajic, Miroslav</creator><creatorcontrib>R Spencer Hallyburton ; Pajic, Miroslav</creatorcontrib><description>Multi-agent, collaborative sensor fusion is a vital component of a multi-national intelligence toolkit. In safety-critical and/or contested environments, adversaries may infiltrate and compromise a number of agents. We analyze state of the art multi-target tracking algorithms under this compromised agent threat model. We prove that the track existence probability test ("track score") is significantly vulnerable to even small numbers of adversaries. To add security awareness, we design a trust estimation framework using hierarchical Bayesian updating. Our framework builds beliefs of trust on tracks and agents by mapping sensor measurements to trust pseudomeasurements (PSMs) and incorporating prior trust beliefs in a Bayesian context. In case studies, our trust estimation algorithm accurately estimates the trustworthiness of tracks/agents, subject to observability limitations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Multiagent systems ; Multiple target tracking ; Safety critical ; Trustworthiness</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2986606746?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>R Spencer Hallyburton</creatorcontrib><creatorcontrib>Pajic, Miroslav</creatorcontrib><title>Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy</title><title>arXiv.org</title><description>Multi-agent, collaborative sensor fusion is a vital component of a multi-national intelligence toolkit. In safety-critical and/or contested environments, adversaries may infiltrate and compromise a number of agents. We analyze state of the art multi-target tracking algorithms under this compromised agent threat model. We prove that the track existence probability test ("track score") is significantly vulnerable to even small numbers of adversaries. To add security awareness, we design a trust estimation framework using hierarchical Bayesian updating. Our framework builds beliefs of trust on tracks and agents by mapping sensor measurements to trust pseudomeasurements (PSMs) and incorporating prior trust beliefs in a Bayesian context. In case studies, our trust estimation algorithm accurately estimates the trustworthiness of tracks/agents, subject to observability limitations.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Multiagent systems</subject><subject>Multiple target tracking</subject><subject>Safety critical</subject><subject>Trustworthiness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsSkTetmLYpLt-4lxVRTYq7mR-jb6-ADOJ3hOwuSMM53WZUztiKp9xOllImSFQVPyOEoZ-W1tNCqcMerhxEddC76ANpCg8bIAZ0M-q2gjSborL4pG6COAS0-5g1ZjtJ4lf66JtvzqWsu2dPhKyof-gmjs1_q2b4SgooyF_y_6wMvrjkb</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>R Spencer Hallyburton</creator><creator>Pajic, Miroslav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240325</creationdate><title>Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy</title><author>R Spencer Hallyburton ; Pajic, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29866067463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Multiagent systems</topic><topic>Multiple target tracking</topic><topic>Safety critical</topic><topic>Trustworthiness</topic><toplevel>online_resources</toplevel><creatorcontrib>R Spencer Hallyburton</creatorcontrib><creatorcontrib>Pajic, Miroslav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R Spencer Hallyburton</au><au>Pajic, Miroslav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy</atitle><jtitle>arXiv.org</jtitle><date>2024-03-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Multi-agent, collaborative sensor fusion is a vital component of a multi-national intelligence toolkit. In safety-critical and/or contested environments, adversaries may infiltrate and compromise a number of agents. We analyze state of the art multi-target tracking algorithms under this compromised agent threat model. We prove that the track existence probability test ("track score") is significantly vulnerable to even small numbers of adversaries. To add security awareness, we design a trust estimation framework using hierarchical Bayesian updating. Our framework builds beliefs of trust on tracks and agents by mapping sensor measurements to trust pseudomeasurements (PSMs) and incorporating prior trust beliefs in a Bayesian context. In case studies, our trust estimation algorithm accurately estimates the trustworthiness of tracks/agents, subject to observability limitations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2986606746 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Bayesian analysis Multiagent systems Multiple target tracking Safety critical Trustworthiness |
title | Bayesian Methods for Trust in Collaborative Multi-Agent Autonomy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bayesian%20Methods%20for%20Trust%20in%20Collaborative%20Multi-Agent%20Autonomy&rft.jtitle=arXiv.org&rft.au=R%20Spencer%20Hallyburton&rft.date=2024-03-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2986606746%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_29866067463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2986606746&rft_id=info:pmid/&rfr_iscdi=true |