Loading…
A Branch and Bound method for the exact parameter identification of the PK/PD model for anesthetic drugs
We address the problem of parameter identification for the standard pharmacokinetic/pharmacodynamic (PK/PD) model for anesthetic drugs. Our main contribution is the development of a global optimization method that guarantees finding the parameters that minimize the one-step ahead prediction error. T...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We address the problem of parameter identification for the standard pharmacokinetic/pharmacodynamic (PK/PD) model for anesthetic drugs. Our main contribution is the development of a global optimization method that guarantees finding the parameters that minimize the one-step ahead prediction error. The method is based on a branch-and-bound algorithm, that can be applied to solve a more general class of nonlinear regression problems. We present some simulation results, based on a dataset of twelve patients. In these simulations, we are always able to identify the exact parameters, despite the non-convexity of the overall identification problem. |
---|---|
ISSN: | 2331-8422 |