Loading…

An Open-source End-to-End Logic Optimization Framework for Large-scale Boolean Network with Reinforcement Learning

We propose an open-source end-to-end logic optimization framework for large-scale boolean network with reinforcement learning.

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Authors: Li, Zhen, Zhu, Kaixiang, Zhou, Xuegong, Wang, Lingli
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Li, Zhen
Zhu, Kaixiang
Zhou, Xuegong
Wang, Lingli
description We propose an open-source end-to-end logic optimization framework for large-scale boolean network with reinforcement learning.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3000390799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3000390799</sourcerecordid><originalsourceid>FETCH-proquest_journals_30003907993</originalsourceid><addsrcrecordid>eNqNjssKwjAQAIMgWLT_sOA5UBNfPaooHoqCeJdQ15ra7moSEfx6g_gBnuYwc5iOSJTWIzkfK9UTqfd1lmVqOlOTiU6EWxDs70jS89OVCGs6y8AyAgqubBllsK19m2CZYONMiy92N7iwg8K4CqUvTYOwZG7QEOwwfP3Lhisc0FIMS2yRAhRoHFmqBqJ7MY3H9Me-GG7Wx9VW3h0_nujDqY4vFNVJx1WdZ7M81_9VHw_3SyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3000390799</pqid></control><display><type>article</type><title>An Open-source End-to-End Logic Optimization Framework for Large-scale Boolean Network with Reinforcement Learning</title><source>Publicly Available Content Database</source><creator>Li, Zhen ; Zhu, Kaixiang ; Zhou, Xuegong ; Wang, Lingli</creator><creatorcontrib>Li, Zhen ; Zhu, Kaixiang ; Zhou, Xuegong ; Wang, Lingli</creatorcontrib><description>We propose an open-source end-to-end logic optimization framework for large-scale boolean network with reinforcement learning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Optimization</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3000390799?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Zhu, Kaixiang</creatorcontrib><creatorcontrib>Zhou, Xuegong</creatorcontrib><creatorcontrib>Wang, Lingli</creatorcontrib><title>An Open-source End-to-End Logic Optimization Framework for Large-scale Boolean Network with Reinforcement Learning</title><title>arXiv.org</title><description>We propose an open-source end-to-end logic optimization framework for large-scale boolean network with reinforcement learning.</description><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjssKwjAQAIMgWLT_sOA5UBNfPaooHoqCeJdQ15ra7moSEfx6g_gBnuYwc5iOSJTWIzkfK9UTqfd1lmVqOlOTiU6EWxDs70jS89OVCGs6y8AyAgqubBllsK19m2CZYONMiy92N7iwg8K4CqUvTYOwZG7QEOwwfP3Lhisc0FIMS2yRAhRoHFmqBqJ7MY3H9Me-GG7Wx9VW3h0_nujDqY4vFNVJx1WdZ7M81_9VHw_3SyI</recordid><startdate>20240326</startdate><enddate>20240326</enddate><creator>Li, Zhen</creator><creator>Zhu, Kaixiang</creator><creator>Zhou, Xuegong</creator><creator>Wang, Lingli</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240326</creationdate><title>An Open-source End-to-End Logic Optimization Framework for Large-scale Boolean Network with Reinforcement Learning</title><author>Li, Zhen ; Zhu, Kaixiang ; Zhou, Xuegong ; Wang, Lingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30003907993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Zhu, Kaixiang</creatorcontrib><creatorcontrib>Zhou, Xuegong</creatorcontrib><creatorcontrib>Wang, Lingli</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhen</au><au>Zhu, Kaixiang</au><au>Zhou, Xuegong</au><au>Wang, Lingli</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Open-source End-to-End Logic Optimization Framework for Large-scale Boolean Network with Reinforcement Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-03-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose an open-source end-to-end logic optimization framework for large-scale boolean network with reinforcement learning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_3000390799
source Publicly Available Content Database
subjects Optimization
title An Open-source End-to-End Logic Optimization Framework for Large-scale Boolean Network with Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Open-source%20End-to-End%20Logic%20Optimization%20Framework%20for%20Large-scale%20Boolean%20Network%20with%20Reinforcement%20Learning&rft.jtitle=arXiv.org&rft.au=Li,%20Zhen&rft.date=2024-03-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3000390799%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_30003907993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3000390799&rft_id=info:pmid/&rfr_iscdi=true