Loading…
Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit
We conduct an exploration-scale ambient noise tomography (ANT) survey over the Hillside Iron Oxide–Copper–Gold (IOCG) deposit in South Australia, leveraging Fleet’s direct-to-satellite technology for real-time data analysis. The acquisition array consisted of 100 sensors spaced 260 m apart which rec...
Saved in:
Published in: | Minerals (Basel) 2024-03, Vol.14 (3), p.254 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-75d86912c6f3b0aeda717fc41393b6b52c6e8af5ae79374ef15d9b83da17ee0f3 |
container_end_page | |
container_issue | 3 |
container_start_page | 254 |
container_title | Minerals (Basel) |
container_volume | 14 |
creator | Jones, Timothy Olivier, Gerrit Murphy, Bronwyn Cole, Lachlan Went, Craig Olsen, Steven Smith, Nicholas Gal, Martin North, Brooke Burrows, Darren |
description | We conduct an exploration-scale ambient noise tomography (ANT) survey over the Hillside Iron Oxide–Copper–Gold (IOCG) deposit in South Australia, leveraging Fleet’s direct-to-satellite technology for real-time data analysis. The acquisition array consisted of 100 sensors spaced 260 m apart which recorded continuous vertical-component seismic ambient noise for 14 days. High quality Rayleigh wave signals, with a mean signal-to-noise ratio (SNR) of 40, were recovered in the frequency band 1–4 Hz after processing the recorded data between 0.1–9 Hz. Our modelling results capture aspects of the deposit’s known geology, including depth of cover, structures linked to mineralisation, and the mineralised host rock, down to approximately 1 km depth. We compare our velocity model with existing magnetic, gravity, induced polarisation and drilling data, showing strong correlation with each. We identify several new features of the local geology, including the behaviour of key structures down to 1 km, and highlight the significance of a Cambrian-age dolomite that cuts across the main structural corridor that hosts the Hillside deposit. An analysis of model convergence rates with respect to Rayleigh wave SNRs shows that real-time data analysis can reduce recording duration at the site by 65% compared to traditional deployment durations, from ∼14 days to ∼5 days. Finally, we conclude by commenting on the efficacy of the ANT technique for the exploration of IOCG systems more broadly. |
doi_str_mv | 10.3390/min14030254 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3003355701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788251401</galeid><sourcerecordid>A788251401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-75d86912c6f3b0aeda717fc41393b6b52c6e8af5ae79374ef15d9b83da17ee0f3</originalsourceid><addsrcrecordid>eNpNUMFKAzEQDaJgqT35AwGPsjXZbDa7x1K1LRQFreBFQnZ30qbsbtZkC_bmP_iHfokp9dCZwzxm3pthHkLXlIwZy8ldY1qaEEZinpyhQUwEj2jK3s9P8CUaeb8lIXLKMh4P0McLqDpamQbwpCkMtD1-BeMbU-InazzglW3s2qlus8dW434DeG7q2psK8MLZFj9_Bfj7_TO1XQcugJmtK3wPnfWmv0IXWtUeRv91iN4eH1bTebR8ni2mk2VUxjnvI8GrLM1pXKaaFURBpQQVukwoy1mRFjwMIFOaKxA5Ewloyqu8yFilqAAgmg3RzXFv5-znDnwvt3bn2nBSMkIY41wQGljjI2utapCm1bZ3qgxZQfjXtqBN6E9ElsU8OHkQ3B4FpbPeO9Cyc6ZRbi8pkQfP5Ynn7A_klnWd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003355701</pqid></control><display><type>article</type><title>Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Jones, Timothy ; Olivier, Gerrit ; Murphy, Bronwyn ; Cole, Lachlan ; Went, Craig ; Olsen, Steven ; Smith, Nicholas ; Gal, Martin ; North, Brooke ; Burrows, Darren</creator><creatorcontrib>Jones, Timothy ; Olivier, Gerrit ; Murphy, Bronwyn ; Cole, Lachlan ; Went, Craig ; Olsen, Steven ; Smith, Nicholas ; Gal, Martin ; North, Brooke ; Burrows, Darren</creatorcontrib><description>We conduct an exploration-scale ambient noise tomography (ANT) survey over the Hillside Iron Oxide–Copper–Gold (IOCG) deposit in South Australia, leveraging Fleet’s direct-to-satellite technology for real-time data analysis. The acquisition array consisted of 100 sensors spaced 260 m apart which recorded continuous vertical-component seismic ambient noise for 14 days. High quality Rayleigh wave signals, with a mean signal-to-noise ratio (SNR) of 40, were recovered in the frequency band 1–4 Hz after processing the recorded data between 0.1–9 Hz. Our modelling results capture aspects of the deposit’s known geology, including depth of cover, structures linked to mineralisation, and the mineralised host rock, down to approximately 1 km depth. We compare our velocity model with existing magnetic, gravity, induced polarisation and drilling data, showing strong correlation with each. We identify several new features of the local geology, including the behaviour of key structures down to 1 km, and highlight the significance of a Cambrian-age dolomite that cuts across the main structural corridor that hosts the Hillside deposit. An analysis of model convergence rates with respect to Rayleigh wave SNRs shows that real-time data analysis can reduce recording duration at the site by 65% compared to traditional deployment durations, from ∼14 days to ∼5 days. Finally, we conclude by commenting on the efficacy of the ANT technique for the exploration of IOCG systems more broadly.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min14030254</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ambient noise ; Analysis ; Cambrian ; Composition ; Copper ; Data analysis ; Dolomite ; Dolostone ; Drilling ; Environmental aspects ; Fourier transforms ; Frequencies ; Geology ; Gold ; Gold mines & mining ; Gravity ; Induced polarization ; Iron ores ; Iron oxides ; Methods ; Mineralization ; Mineralogical research ; Rayleigh waves ; Real time ; Satellite technology ; Sensors ; Signal quality ; Signal to noise ratio ; Testing ; Tomography ; Velocity</subject><ispartof>Minerals (Basel), 2024-03, Vol.14 (3), p.254</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-75d86912c6f3b0aeda717fc41393b6b52c6e8af5ae79374ef15d9b83da17ee0f3</cites><orcidid>0000-0002-2083-5895 ; 0009-0000-8093-592X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003355701/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003355701?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11667,25731,27901,27902,36037,36989,44339,44566,74638,74869</link.rule.ids></links><search><creatorcontrib>Jones, Timothy</creatorcontrib><creatorcontrib>Olivier, Gerrit</creatorcontrib><creatorcontrib>Murphy, Bronwyn</creatorcontrib><creatorcontrib>Cole, Lachlan</creatorcontrib><creatorcontrib>Went, Craig</creatorcontrib><creatorcontrib>Olsen, Steven</creatorcontrib><creatorcontrib>Smith, Nicholas</creatorcontrib><creatorcontrib>Gal, Martin</creatorcontrib><creatorcontrib>North, Brooke</creatorcontrib><creatorcontrib>Burrows, Darren</creatorcontrib><title>Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit</title><title>Minerals (Basel)</title><description>We conduct an exploration-scale ambient noise tomography (ANT) survey over the Hillside Iron Oxide–Copper–Gold (IOCG) deposit in South Australia, leveraging Fleet’s direct-to-satellite technology for real-time data analysis. The acquisition array consisted of 100 sensors spaced 260 m apart which recorded continuous vertical-component seismic ambient noise for 14 days. High quality Rayleigh wave signals, with a mean signal-to-noise ratio (SNR) of 40, were recovered in the frequency band 1–4 Hz after processing the recorded data between 0.1–9 Hz. Our modelling results capture aspects of the deposit’s known geology, including depth of cover, structures linked to mineralisation, and the mineralised host rock, down to approximately 1 km depth. We compare our velocity model with existing magnetic, gravity, induced polarisation and drilling data, showing strong correlation with each. We identify several new features of the local geology, including the behaviour of key structures down to 1 km, and highlight the significance of a Cambrian-age dolomite that cuts across the main structural corridor that hosts the Hillside deposit. An analysis of model convergence rates with respect to Rayleigh wave SNRs shows that real-time data analysis can reduce recording duration at the site by 65% compared to traditional deployment durations, from ∼14 days to ∼5 days. Finally, we conclude by commenting on the efficacy of the ANT technique for the exploration of IOCG systems more broadly.</description><subject>Ambient noise</subject><subject>Analysis</subject><subject>Cambrian</subject><subject>Composition</subject><subject>Copper</subject><subject>Data analysis</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Drilling</subject><subject>Environmental aspects</subject><subject>Fourier transforms</subject><subject>Frequencies</subject><subject>Geology</subject><subject>Gold</subject><subject>Gold mines & mining</subject><subject>Gravity</subject><subject>Induced polarization</subject><subject>Iron ores</subject><subject>Iron oxides</subject><subject>Methods</subject><subject>Mineralization</subject><subject>Mineralogical research</subject><subject>Rayleigh waves</subject><subject>Real time</subject><subject>Satellite technology</subject><subject>Sensors</subject><subject>Signal quality</subject><subject>Signal to noise ratio</subject><subject>Testing</subject><subject>Tomography</subject><subject>Velocity</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNpNUMFKAzEQDaJgqT35AwGPsjXZbDa7x1K1LRQFreBFQnZ30qbsbtZkC_bmP_iHfokp9dCZwzxm3pthHkLXlIwZy8ldY1qaEEZinpyhQUwEj2jK3s9P8CUaeb8lIXLKMh4P0McLqDpamQbwpCkMtD1-BeMbU-InazzglW3s2qlus8dW434DeG7q2psK8MLZFj9_Bfj7_TO1XQcugJmtK3wPnfWmv0IXWtUeRv91iN4eH1bTebR8ni2mk2VUxjnvI8GrLM1pXKaaFURBpQQVukwoy1mRFjwMIFOaKxA5Ewloyqu8yFilqAAgmg3RzXFv5-znDnwvt3bn2nBSMkIY41wQGljjI2utapCm1bZ3qgxZQfjXtqBN6E9ElsU8OHkQ3B4FpbPeO9Cyc6ZRbi8pkQfP5Ynn7A_klnWd</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Jones, Timothy</creator><creator>Olivier, Gerrit</creator><creator>Murphy, Bronwyn</creator><creator>Cole, Lachlan</creator><creator>Went, Craig</creator><creator>Olsen, Steven</creator><creator>Smith, Nicholas</creator><creator>Gal, Martin</creator><creator>North, Brooke</creator><creator>Burrows, Darren</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2083-5895</orcidid><orcidid>https://orcid.org/0009-0000-8093-592X</orcidid></search><sort><creationdate>20240301</creationdate><title>Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit</title><author>Jones, Timothy ; Olivier, Gerrit ; Murphy, Bronwyn ; Cole, Lachlan ; Went, Craig ; Olsen, Steven ; Smith, Nicholas ; Gal, Martin ; North, Brooke ; Burrows, Darren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-75d86912c6f3b0aeda717fc41393b6b52c6e8af5ae79374ef15d9b83da17ee0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambient noise</topic><topic>Analysis</topic><topic>Cambrian</topic><topic>Composition</topic><topic>Copper</topic><topic>Data analysis</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Drilling</topic><topic>Environmental aspects</topic><topic>Fourier transforms</topic><topic>Frequencies</topic><topic>Geology</topic><topic>Gold</topic><topic>Gold mines & mining</topic><topic>Gravity</topic><topic>Induced polarization</topic><topic>Iron ores</topic><topic>Iron oxides</topic><topic>Methods</topic><topic>Mineralization</topic><topic>Mineralogical research</topic><topic>Rayleigh waves</topic><topic>Real time</topic><topic>Satellite technology</topic><topic>Sensors</topic><topic>Signal quality</topic><topic>Signal to noise ratio</topic><topic>Testing</topic><topic>Tomography</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Timothy</creatorcontrib><creatorcontrib>Olivier, Gerrit</creatorcontrib><creatorcontrib>Murphy, Bronwyn</creatorcontrib><creatorcontrib>Cole, Lachlan</creatorcontrib><creatorcontrib>Went, Craig</creatorcontrib><creatorcontrib>Olsen, Steven</creatorcontrib><creatorcontrib>Smith, Nicholas</creatorcontrib><creatorcontrib>Gal, Martin</creatorcontrib><creatorcontrib>North, Brooke</creatorcontrib><creatorcontrib>Burrows, Darren</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Timothy</au><au>Olivier, Gerrit</au><au>Murphy, Bronwyn</au><au>Cole, Lachlan</au><au>Went, Craig</au><au>Olsen, Steven</au><au>Smith, Nicholas</au><au>Gal, Martin</au><au>North, Brooke</au><au>Burrows, Darren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit</atitle><jtitle>Minerals (Basel)</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>14</volume><issue>3</issue><spage>254</spage><pages>254-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>We conduct an exploration-scale ambient noise tomography (ANT) survey over the Hillside Iron Oxide–Copper–Gold (IOCG) deposit in South Australia, leveraging Fleet’s direct-to-satellite technology for real-time data analysis. The acquisition array consisted of 100 sensors spaced 260 m apart which recorded continuous vertical-component seismic ambient noise for 14 days. High quality Rayleigh wave signals, with a mean signal-to-noise ratio (SNR) of 40, were recovered in the frequency band 1–4 Hz after processing the recorded data between 0.1–9 Hz. Our modelling results capture aspects of the deposit’s known geology, including depth of cover, structures linked to mineralisation, and the mineralised host rock, down to approximately 1 km depth. We compare our velocity model with existing magnetic, gravity, induced polarisation and drilling data, showing strong correlation with each. We identify several new features of the local geology, including the behaviour of key structures down to 1 km, and highlight the significance of a Cambrian-age dolomite that cuts across the main structural corridor that hosts the Hillside deposit. An analysis of model convergence rates with respect to Rayleigh wave SNRs shows that real-time data analysis can reduce recording duration at the site by 65% compared to traditional deployment durations, from ∼14 days to ∼5 days. Finally, we conclude by commenting on the efficacy of the ANT technique for the exploration of IOCG systems more broadly.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min14030254</doi><orcidid>https://orcid.org/0000-0002-2083-5895</orcidid><orcidid>https://orcid.org/0009-0000-8093-592X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2024-03, Vol.14 (3), p.254 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_proquest_journals_3003355701 |
source | Publicly Available Content Database; ABI/INFORM Global |
subjects | Ambient noise Analysis Cambrian Composition Copper Data analysis Dolomite Dolostone Drilling Environmental aspects Fourier transforms Frequencies Geology Gold Gold mines & mining Gravity Induced polarization Iron ores Iron oxides Methods Mineralization Mineralogical research Rayleigh waves Real time Satellite technology Sensors Signal quality Signal to noise ratio Testing Tomography Velocity |
title | Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Ambient%20Seismic%20Noise%20Tomography%20of%20the%20Hillside%20Iron%20Oxide%E2%80%93Copper%E2%80%93Gold%20Deposit&rft.jtitle=Minerals%20(Basel)&rft.au=Jones,%20Timothy&rft.date=2024-03-01&rft.volume=14&rft.issue=3&rft.spage=254&rft.pages=254-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min14030254&rft_dat=%3Cgale_proqu%3EA788251401%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-75d86912c6f3b0aeda717fc41393b6b52c6e8af5ae79374ef15d9b83da17ee0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003355701&rft_id=info:pmid/&rft_galeid=A788251401&rfr_iscdi=true |