Loading…
Exponential Stabilization of Stochastic Feedforward Nonlinear Systems: A Dynamic Gain Approach
This paper solves the problem of almost sure exponential stabilization via output feedback control for stochastic feedforward nonlinear systems with the unknown growth rate. A novel dynamic gain is introduced not only to cope with system uncertainties but also to ensure exponential convergence. Base...
Saved in:
Published in: | IEEE transactions on automatic control 2024-04, Vol.69 (4), p.1-8 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-6bbe9c2a2a5f69e8716124fb886f53ae590f5666f1c09b22f1c3e471644a8cb73 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-6bbe9c2a2a5f69e8716124fb886f53ae590f5666f1c09b22f1c3e471644a8cb73 |
container_end_page | 8 |
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Cui, Rong-Heng Xie, Xue-Jun |
description | This paper solves the problem of almost sure exponential stabilization via output feedback control for stochastic feedforward nonlinear systems with the unknown growth rate. A novel dynamic gain is introduced not only to cope with system uncertainties but also to ensure exponential convergence. Based on this dynamic gain, an adaptive output feedback controller is explicitly constructed. By introducing an improved stochastic analysis method, we rigorously prove that the closed-loop system has an almost surely unique solution, all the closed-loop signals are bounded almost surely, and the solution of the closed-loop system tends to the equilibrium position exponentially fast. |
doi_str_mv | 10.1109/TAC.2023.3331682 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3015058328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10313933</ieee_id><sourcerecordid>3015058328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6bbe9c2a2a5f69e8716124fb886f53ae590f5666f1c09b22f1c3e471644a8cb73</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXho4nmxH9vS9bZBQBOiB_Bq0y1tKFnatV2j-NdbAgdPLzP5vXmZB8AtRiOMUfWwqicjgggdUUoxF-QMDDBjoiCM0HMwQAiLoiKCX4KrlLZ55GWJB-Bj-tMFb3zvVAuXvWpc635V74KHweZF0BuVeqfhzJi1DfFbxTV8Db513qgIl_vUm116hDV82nu1y-BcOQ_rrotB6c01uLCqTebmpEPwPpuuJs_F4m3-MqkXhSYV6QveNKbSRBHFLK-MGGOOSWkbIbhlVBlWIcs45xZrVDWEZKWmHB9-UEI3YzoE98e7Ofbzy6RebsNX9DlSUoQZYoISkSl0pHQMKUVjZRfdTsW9xEgeWpS5RXloUZ5azJa7o8UZY_7hFNMqM3-n123g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015058328</pqid></control><display><type>article</type><title>Exponential Stabilization of Stochastic Feedforward Nonlinear Systems: A Dynamic Gain Approach</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cui, Rong-Heng ; Xie, Xue-Jun</creator><creatorcontrib>Cui, Rong-Heng ; Xie, Xue-Jun</creatorcontrib><description>This paper solves the problem of almost sure exponential stabilization via output feedback control for stochastic feedforward nonlinear systems with the unknown growth rate. A novel dynamic gain is introduced not only to cope with system uncertainties but also to ensure exponential convergence. Based on this dynamic gain, an adaptive output feedback controller is explicitly constructed. By introducing an improved stochastic analysis method, we rigorously prove that the closed-loop system has an almost surely unique solution, all the closed-loop signals are bounded almost surely, and the solution of the closed-loop system tends to the equilibrium position exponentially fast.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3331682</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive systems ; Closed loop systems ; Closed loops ; Control design ; Control systems ; Convergence ; Dynamic gain ; exponential stability ; Feedback control ; Feedforward control ; Feedforward systems ; Nonlinear systems ; Output feedback ; output feedback control ; Stabilization ; stochastic feedforward nonlinear systems ; Time-varying systems</subject><ispartof>IEEE transactions on automatic control, 2024-04, Vol.69 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6bbe9c2a2a5f69e8716124fb886f53ae590f5666f1c09b22f1c3e471644a8cb73</citedby><cites>FETCH-LOGICAL-c292t-6bbe9c2a2a5f69e8716124fb886f53ae590f5666f1c09b22f1c3e471644a8cb73</cites><orcidid>0000-0002-3470-7229 ; 0000-0003-2656-6347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10313933$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cui, Rong-Heng</creatorcontrib><creatorcontrib>Xie, Xue-Jun</creatorcontrib><title>Exponential Stabilization of Stochastic Feedforward Nonlinear Systems: A Dynamic Gain Approach</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper solves the problem of almost sure exponential stabilization via output feedback control for stochastic feedforward nonlinear systems with the unknown growth rate. A novel dynamic gain is introduced not only to cope with system uncertainties but also to ensure exponential convergence. Based on this dynamic gain, an adaptive output feedback controller is explicitly constructed. By introducing an improved stochastic analysis method, we rigorously prove that the closed-loop system has an almost surely unique solution, all the closed-loop signals are bounded almost surely, and the solution of the closed-loop system tends to the equilibrium position exponentially fast.</description><subject>Adaptive systems</subject><subject>Closed loop systems</subject><subject>Closed loops</subject><subject>Control design</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Dynamic gain</subject><subject>exponential stability</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Feedforward systems</subject><subject>Nonlinear systems</subject><subject>Output feedback</subject><subject>output feedback control</subject><subject>Stabilization</subject><subject>stochastic feedforward nonlinear systems</subject><subject>Time-varying systems</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1PAjEQxRujiYjePXho4nmxH9vS9bZBQBOiB_Bq0y1tKFnatV2j-NdbAgdPLzP5vXmZB8AtRiOMUfWwqicjgggdUUoxF-QMDDBjoiCM0HMwQAiLoiKCX4KrlLZ55GWJB-Bj-tMFb3zvVAuXvWpc635V74KHweZF0BuVeqfhzJi1DfFbxTV8Db513qgIl_vUm116hDV82nu1y-BcOQ_rrotB6c01uLCqTebmpEPwPpuuJs_F4m3-MqkXhSYV6QveNKbSRBHFLK-MGGOOSWkbIbhlVBlWIcs45xZrVDWEZKWmHB9-UEI3YzoE98e7Ofbzy6RebsNX9DlSUoQZYoISkSl0pHQMKUVjZRfdTsW9xEgeWpS5RXloUZ5azJa7o8UZY_7hFNMqM3-n123g</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Cui, Rong-Heng</creator><creator>Xie, Xue-Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3470-7229</orcidid><orcidid>https://orcid.org/0000-0003-2656-6347</orcidid></search><sort><creationdate>20240401</creationdate><title>Exponential Stabilization of Stochastic Feedforward Nonlinear Systems: A Dynamic Gain Approach</title><author>Cui, Rong-Heng ; Xie, Xue-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6bbe9c2a2a5f69e8716124fb886f53ae590f5666f1c09b22f1c3e471644a8cb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive systems</topic><topic>Closed loop systems</topic><topic>Closed loops</topic><topic>Control design</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Dynamic gain</topic><topic>exponential stability</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Feedforward systems</topic><topic>Nonlinear systems</topic><topic>Output feedback</topic><topic>output feedback control</topic><topic>Stabilization</topic><topic>stochastic feedforward nonlinear systems</topic><topic>Time-varying systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Rong-Heng</creatorcontrib><creatorcontrib>Xie, Xue-Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Rong-Heng</au><au>Xie, Xue-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Stabilization of Stochastic Feedforward Nonlinear Systems: A Dynamic Gain Approach</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>69</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper solves the problem of almost sure exponential stabilization via output feedback control for stochastic feedforward nonlinear systems with the unknown growth rate. A novel dynamic gain is introduced not only to cope with system uncertainties but also to ensure exponential convergence. Based on this dynamic gain, an adaptive output feedback controller is explicitly constructed. By introducing an improved stochastic analysis method, we rigorously prove that the closed-loop system has an almost surely unique solution, all the closed-loop signals are bounded almost surely, and the solution of the closed-loop system tends to the equilibrium position exponentially fast.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2023.3331682</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3470-7229</orcidid><orcidid>https://orcid.org/0000-0003-2656-6347</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-04, Vol.69 (4), p.1-8 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_3015058328 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive systems Closed loop systems Closed loops Control design Control systems Convergence Dynamic gain exponential stability Feedback control Feedforward control Feedforward systems Nonlinear systems Output feedback output feedback control Stabilization stochastic feedforward nonlinear systems Time-varying systems |
title | Exponential Stabilization of Stochastic Feedforward Nonlinear Systems: A Dynamic Gain Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Stabilization%20of%20Stochastic%20Feedforward%20Nonlinear%20Systems:%20A%20Dynamic%20Gain%20Approach&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Cui,%20Rong-Heng&rft.date=2024-04-01&rft.volume=69&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2023.3331682&rft_dat=%3Cproquest_cross%3E3015058328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-6bbe9c2a2a5f69e8716124fb886f53ae590f5666f1c09b22f1c3e471644a8cb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3015058328&rft_id=info:pmid/&rft_ieee_id=10313933&rfr_iscdi=true |