Loading…

Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data

In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enha...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11
Main Authors: Tan, Jinbiao, Wan, Jiafu, Chen, Baotong, Safran, Mejdl, AlQahtani, Salman A., Zhang, Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3
cites cdi_FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Tan, Jinbiao
Wan, Jiafu
Chen, Baotong
Safran, Mejdl
AlQahtani, Salman A.
Zhang, Rui
description In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enhance model robustness under non-ideal sensor data conditions. Hence, a robust fault diagnostic scheme based on adaptive noise filtering and useful feature-domain enhancement (UFDE) is proposed in this article to improve the stability of fault diagnostic performance. An interference identification branch (IIB) is designed to analyze sensor data from a high-dimensional and multilevel perspective, automatically identifying and localizing feature noise during training. Subsequently, a UFDE mechanism containing three feature mapping modes is created, using adaptive mapping and filling of fault features in the neighborhood to eliminate feature noise and enhance the useful feature domain. This process improves the representation of fault features under non-ideal sensor data conditions, such as noise interference and data defects, thereby enhancing the FDMs robustness. Finally, under non-ideal sensor data conditions, comparative experiments with advanced fault diagnostic methods demonstrate that the proposed method exhibits minimal fluctuations in diagnostic accuracy and achieves the highest correctness rate, validating its robustness.
doi_str_mv 10.1109/TIM.2024.3375958
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3015058559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10466600</ieee_id><sourcerecordid>3015058559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4CnrdOsptk9-hXteAHaIvHJbs7W1LbRJOs4sH_bqQePAwDw_O-Aw8hxwwmjEF1Np_dTzjwYpLnSlSi3CEjJoTKKin5LhkBsDKrCiH3yUEIKwBQslAj8v2Ma2yj-UA6RR0Hj_QJje2db3GDNtIHjJ_Ov9J0oU-uGUJMwMbFxOthHemV0UvrggnU9fTF2I7OB98Yi_QCtTd2SRe2Q08fnM1mHeo1fUYbUtmVjvqQ7PV6HfDob4_JYno9v7zN7h5vZpfnd1nLKx4z1eoeO4YdStEUHXAQRaFkybngMk2nmpw3utWCKeQqVz1ImaSUCG1eVTofk9Nt75t37wOGWK_c4G16WefABIhSiCpRsKVa70Lw2Ndv3my0_6oZ1L-S6yS5_pVc_0lOkZNtxCDiP7yQUgLkP2gWeHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015058559</pqid></control><display><type>article</type><title>Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tan, Jinbiao ; Wan, Jiafu ; Chen, Baotong ; Safran, Mejdl ; AlQahtani, Salman A. ; Zhang, Rui</creator><creatorcontrib>Tan, Jinbiao ; Wan, Jiafu ; Chen, Baotong ; Safran, Mejdl ; AlQahtani, Salman A. ; Zhang, Rui</creatorcontrib><description>In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enhance model robustness under non-ideal sensor data conditions. Hence, a robust fault diagnostic scheme based on adaptive noise filtering and useful feature-domain enhancement (UFDE) is proposed in this article to improve the stability of fault diagnostic performance. An interference identification branch (IIB) is designed to analyze sensor data from a high-dimensional and multilevel perspective, automatically identifying and localizing feature noise during training. Subsequently, a UFDE mechanism containing three feature mapping modes is created, using adaptive mapping and filling of fault features in the neighborhood to eliminate feature noise and enhance the useful feature domain. This process improves the representation of fault features under non-ideal sensor data conditions, such as noise interference and data defects, thereby enhancing the FDMs robustness. Finally, under non-ideal sensor data conditions, comparative experiments with advanced fault diagnostic methods demonstrate that the proposed method exhibits minimal fluctuations in diagnostic accuracy and achieves the highest correctness rate, validating its robustness.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3375958</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial intelligence ; Background noise ; Data models ; Deep learning ; Diagnostic systems ; Fault diagnosis ; Interference ; Mapping ; Remote sensors ; Robustness ; Robustness (mathematics) ; sensor failure ; Sensors ; Training ; wind turbine ; Wind turbines</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3</citedby><cites>FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3</cites><orcidid>0000-0002-8222-7799 ; 0000-0001-9188-4179 ; 0009-0002-7576-8789 ; 0000-0002-7445-7121 ; 0000-0003-1233-1774 ; 0000-0003-2324-4916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10466600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Tan, Jinbiao</creatorcontrib><creatorcontrib>Wan, Jiafu</creatorcontrib><creatorcontrib>Chen, Baotong</creatorcontrib><creatorcontrib>Safran, Mejdl</creatorcontrib><creatorcontrib>AlQahtani, Salman A.</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><title>Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enhance model robustness under non-ideal sensor data conditions. Hence, a robust fault diagnostic scheme based on adaptive noise filtering and useful feature-domain enhancement (UFDE) is proposed in this article to improve the stability of fault diagnostic performance. An interference identification branch (IIB) is designed to analyze sensor data from a high-dimensional and multilevel perspective, automatically identifying and localizing feature noise during training. Subsequently, a UFDE mechanism containing three feature mapping modes is created, using adaptive mapping and filling of fault features in the neighborhood to eliminate feature noise and enhance the useful feature domain. This process improves the representation of fault features under non-ideal sensor data conditions, such as noise interference and data defects, thereby enhancing the FDMs robustness. Finally, under non-ideal sensor data conditions, comparative experiments with advanced fault diagnostic methods demonstrate that the proposed method exhibits minimal fluctuations in diagnostic accuracy and achieves the highest correctness rate, validating its robustness.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Background noise</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Diagnostic systems</subject><subject>Fault diagnosis</subject><subject>Interference</subject><subject>Mapping</subject><subject>Remote sensors</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>sensor failure</subject><subject>Sensors</subject><subject>Training</subject><subject>wind turbine</subject><subject>Wind turbines</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3Dx4CnrdOsptk9-hXteAHaIvHJbs7W1LbRJOs4sH_bqQePAwDw_O-Aw8hxwwmjEF1Np_dTzjwYpLnSlSi3CEjJoTKKin5LhkBsDKrCiH3yUEIKwBQslAj8v2Ma2yj-UA6RR0Hj_QJje2db3GDNtIHjJ_Ov9J0oU-uGUJMwMbFxOthHemV0UvrggnU9fTF2I7OB98Yi_QCtTd2SRe2Q08fnM1mHeo1fUYbUtmVjvqQ7PV6HfDob4_JYno9v7zN7h5vZpfnd1nLKx4z1eoeO4YdStEUHXAQRaFkybngMk2nmpw3utWCKeQqVz1ImaSUCG1eVTofk9Nt75t37wOGWK_c4G16WefABIhSiCpRsKVa70Lw2Ndv3my0_6oZ1L-S6yS5_pVc_0lOkZNtxCDiP7yQUgLkP2gWeHk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tan, Jinbiao</creator><creator>Wan, Jiafu</creator><creator>Chen, Baotong</creator><creator>Safran, Mejdl</creator><creator>AlQahtani, Salman A.</creator><creator>Zhang, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8222-7799</orcidid><orcidid>https://orcid.org/0000-0001-9188-4179</orcidid><orcidid>https://orcid.org/0009-0002-7576-8789</orcidid><orcidid>https://orcid.org/0000-0002-7445-7121</orcidid><orcidid>https://orcid.org/0000-0003-1233-1774</orcidid><orcidid>https://orcid.org/0000-0003-2324-4916</orcidid></search><sort><creationdate>2024</creationdate><title>Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data</title><author>Tan, Jinbiao ; Wan, Jiafu ; Chen, Baotong ; Safran, Mejdl ; AlQahtani, Salman A. ; Zhang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Background noise</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Diagnostic systems</topic><topic>Fault diagnosis</topic><topic>Interference</topic><topic>Mapping</topic><topic>Remote sensors</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>sensor failure</topic><topic>Sensors</topic><topic>Training</topic><topic>wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jinbiao</creatorcontrib><creatorcontrib>Wan, Jiafu</creatorcontrib><creatorcontrib>Chen, Baotong</creatorcontrib><creatorcontrib>Safran, Mejdl</creatorcontrib><creatorcontrib>AlQahtani, Salman A.</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Jinbiao</au><au>Wan, Jiafu</au><au>Chen, Baotong</au><au>Safran, Mejdl</au><au>AlQahtani, Salman A.</au><au>Zhang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enhance model robustness under non-ideal sensor data conditions. Hence, a robust fault diagnostic scheme based on adaptive noise filtering and useful feature-domain enhancement (UFDE) is proposed in this article to improve the stability of fault diagnostic performance. An interference identification branch (IIB) is designed to analyze sensor data from a high-dimensional and multilevel perspective, automatically identifying and localizing feature noise during training. Subsequently, a UFDE mechanism containing three feature mapping modes is created, using adaptive mapping and filling of fault features in the neighborhood to eliminate feature noise and enhance the useful feature domain. This process improves the representation of fault features under non-ideal sensor data conditions, such as noise interference and data defects, thereby enhancing the FDMs robustness. Finally, under non-ideal sensor data conditions, comparative experiments with advanced fault diagnostic methods demonstrate that the proposed method exhibits minimal fluctuations in diagnostic accuracy and achieves the highest correctness rate, validating its robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3375958</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8222-7799</orcidid><orcidid>https://orcid.org/0000-0001-9188-4179</orcidid><orcidid>https://orcid.org/0009-0002-7576-8789</orcidid><orcidid>https://orcid.org/0000-0002-7445-7121</orcidid><orcidid>https://orcid.org/0000-0003-1233-1774</orcidid><orcidid>https://orcid.org/0000-0003-2324-4916</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_3015058559
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Artificial intelligence
Background noise
Data models
Deep learning
Diagnostic systems
Fault diagnosis
Interference
Mapping
Remote sensors
Robustness
Robustness (mathematics)
sensor failure
Sensors
Training
wind turbine
Wind turbines
title Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Feature%20Reinforcement%20Network%20for%20Robust%20Remote%20Fault%20Diagnosis%20of%20Wind%20Turbine%20Bearing%20Under%20Non-Ideal%20Sensor%20Data&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Tan,%20Jinbiao&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3375958&rft_dat=%3Cproquest_ieee_%3E3015058559%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3015058559&rft_id=info:pmid/&rft_ieee_id=10466600&rfr_iscdi=true