Loading…
Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data
In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enha...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Tan, Jinbiao Wan, Jiafu Chen, Baotong Safran, Mejdl AlQahtani, Salman A. Zhang, Rui |
description | In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enhance model robustness under non-ideal sensor data conditions. Hence, a robust fault diagnostic scheme based on adaptive noise filtering and useful feature-domain enhancement (UFDE) is proposed in this article to improve the stability of fault diagnostic performance. An interference identification branch (IIB) is designed to analyze sensor data from a high-dimensional and multilevel perspective, automatically identifying and localizing feature noise during training. Subsequently, a UFDE mechanism containing three feature mapping modes is created, using adaptive mapping and filling of fault features in the neighborhood to eliminate feature noise and enhance the useful feature domain. This process improves the representation of fault features under non-ideal sensor data conditions, such as noise interference and data defects, thereby enhancing the FDMs robustness. Finally, under non-ideal sensor data conditions, comparative experiments with advanced fault diagnostic methods demonstrate that the proposed method exhibits minimal fluctuations in diagnostic accuracy and achieves the highest correctness rate, validating its robustness. |
doi_str_mv | 10.1109/TIM.2024.3375958 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3015058559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10466600</ieee_id><sourcerecordid>3015058559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4CnrdOsptk9-hXteAHaIvHJbs7W1LbRJOs4sH_bqQePAwDw_O-Aw8hxwwmjEF1Np_dTzjwYpLnSlSi3CEjJoTKKin5LhkBsDKrCiH3yUEIKwBQslAj8v2Ma2yj-UA6RR0Hj_QJje2db3GDNtIHjJ_Ov9J0oU-uGUJMwMbFxOthHemV0UvrggnU9fTF2I7OB98Yi_QCtTd2SRe2Q08fnM1mHeo1fUYbUtmVjvqQ7PV6HfDob4_JYno9v7zN7h5vZpfnd1nLKx4z1eoeO4YdStEUHXAQRaFkybngMk2nmpw3utWCKeQqVz1ImaSUCG1eVTofk9Nt75t37wOGWK_c4G16WefABIhSiCpRsKVa70Lw2Ndv3my0_6oZ1L-S6yS5_pVc_0lOkZNtxCDiP7yQUgLkP2gWeHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015058559</pqid></control><display><type>article</type><title>Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tan, Jinbiao ; Wan, Jiafu ; Chen, Baotong ; Safran, Mejdl ; AlQahtani, Salman A. ; Zhang, Rui</creator><creatorcontrib>Tan, Jinbiao ; Wan, Jiafu ; Chen, Baotong ; Safran, Mejdl ; AlQahtani, Salman A. ; Zhang, Rui</creatorcontrib><description>In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enhance model robustness under non-ideal sensor data conditions. Hence, a robust fault diagnostic scheme based on adaptive noise filtering and useful feature-domain enhancement (UFDE) is proposed in this article to improve the stability of fault diagnostic performance. An interference identification branch (IIB) is designed to analyze sensor data from a high-dimensional and multilevel perspective, automatically identifying and localizing feature noise during training. Subsequently, a UFDE mechanism containing three feature mapping modes is created, using adaptive mapping and filling of fault features in the neighborhood to eliminate feature noise and enhance the useful feature domain. This process improves the representation of fault features under non-ideal sensor data conditions, such as noise interference and data defects, thereby enhancing the FDMs robustness. Finally, under non-ideal sensor data conditions, comparative experiments with advanced fault diagnostic methods demonstrate that the proposed method exhibits minimal fluctuations in diagnostic accuracy and achieves the highest correctness rate, validating its robustness.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3375958</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Artificial intelligence ; Background noise ; Data models ; Deep learning ; Diagnostic systems ; Fault diagnosis ; Interference ; Mapping ; Remote sensors ; Robustness ; Robustness (mathematics) ; sensor failure ; Sensors ; Training ; wind turbine ; Wind turbines</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3</citedby><cites>FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3</cites><orcidid>0000-0002-8222-7799 ; 0000-0001-9188-4179 ; 0009-0002-7576-8789 ; 0000-0002-7445-7121 ; 0000-0003-1233-1774 ; 0000-0003-2324-4916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10466600$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4023,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Tan, Jinbiao</creatorcontrib><creatorcontrib>Wan, Jiafu</creatorcontrib><creatorcontrib>Chen, Baotong</creatorcontrib><creatorcontrib>Safran, Mejdl</creatorcontrib><creatorcontrib>AlQahtani, Salman A.</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><title>Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enhance model robustness under non-ideal sensor data conditions. Hence, a robust fault diagnostic scheme based on adaptive noise filtering and useful feature-domain enhancement (UFDE) is proposed in this article to improve the stability of fault diagnostic performance. An interference identification branch (IIB) is designed to analyze sensor data from a high-dimensional and multilevel perspective, automatically identifying and localizing feature noise during training. Subsequently, a UFDE mechanism containing three feature mapping modes is created, using adaptive mapping and filling of fault features in the neighborhood to eliminate feature noise and enhance the useful feature domain. This process improves the representation of fault features under non-ideal sensor data conditions, such as noise interference and data defects, thereby enhancing the FDMs robustness. Finally, under non-ideal sensor data conditions, comparative experiments with advanced fault diagnostic methods demonstrate that the proposed method exhibits minimal fluctuations in diagnostic accuracy and achieves the highest correctness rate, validating its robustness.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Background noise</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Diagnostic systems</subject><subject>Fault diagnosis</subject><subject>Interference</subject><subject>Mapping</subject><subject>Remote sensors</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>sensor failure</subject><subject>Sensors</subject><subject>Training</subject><subject>wind turbine</subject><subject>Wind turbines</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKt3Dx4CnrdOsptk9-hXteAHaIvHJbs7W1LbRJOs4sH_bqQePAwDw_O-Aw8hxwwmjEF1Np_dTzjwYpLnSlSi3CEjJoTKKin5LhkBsDKrCiH3yUEIKwBQslAj8v2Ma2yj-UA6RR0Hj_QJje2db3GDNtIHjJ_Ov9J0oU-uGUJMwMbFxOthHemV0UvrggnU9fTF2I7OB98Yi_QCtTd2SRe2Q08fnM1mHeo1fUYbUtmVjvqQ7PV6HfDob4_JYno9v7zN7h5vZpfnd1nLKx4z1eoeO4YdStEUHXAQRaFkybngMk2nmpw3utWCKeQqVz1ImaSUCG1eVTofk9Nt75t37wOGWK_c4G16WefABIhSiCpRsKVa70Lw2Ndv3my0_6oZ1L-S6yS5_pVc_0lOkZNtxCDiP7yQUgLkP2gWeHk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tan, Jinbiao</creator><creator>Wan, Jiafu</creator><creator>Chen, Baotong</creator><creator>Safran, Mejdl</creator><creator>AlQahtani, Salman A.</creator><creator>Zhang, Rui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8222-7799</orcidid><orcidid>https://orcid.org/0000-0001-9188-4179</orcidid><orcidid>https://orcid.org/0009-0002-7576-8789</orcidid><orcidid>https://orcid.org/0000-0002-7445-7121</orcidid><orcidid>https://orcid.org/0000-0003-1233-1774</orcidid><orcidid>https://orcid.org/0000-0003-2324-4916</orcidid></search><sort><creationdate>2024</creationdate><title>Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data</title><author>Tan, Jinbiao ; Wan, Jiafu ; Chen, Baotong ; Safran, Mejdl ; AlQahtani, Salman A. ; Zhang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Background noise</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Diagnostic systems</topic><topic>Fault diagnosis</topic><topic>Interference</topic><topic>Mapping</topic><topic>Remote sensors</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>sensor failure</topic><topic>Sensors</topic><topic>Training</topic><topic>wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jinbiao</creatorcontrib><creatorcontrib>Wan, Jiafu</creatorcontrib><creatorcontrib>Chen, Baotong</creatorcontrib><creatorcontrib>Safran, Mejdl</creatorcontrib><creatorcontrib>AlQahtani, Salman A.</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Jinbiao</au><au>Wan, Jiafu</au><au>Chen, Baotong</au><au>Safran, Mejdl</au><au>AlQahtani, Salman A.</au><au>Zhang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>In the wind turbine remote fault diagnosis, sensor data is susceptible to low-quality phenomena such as missing and damaged data due to communication delays, environmental noise, and sensor faults. These issues decrease the accuracy of fault diagnostic models (FDMs), necessitating a solution to enhance model robustness under non-ideal sensor data conditions. Hence, a robust fault diagnostic scheme based on adaptive noise filtering and useful feature-domain enhancement (UFDE) is proposed in this article to improve the stability of fault diagnostic performance. An interference identification branch (IIB) is designed to analyze sensor data from a high-dimensional and multilevel perspective, automatically identifying and localizing feature noise during training. Subsequently, a UFDE mechanism containing three feature mapping modes is created, using adaptive mapping and filling of fault features in the neighborhood to eliminate feature noise and enhance the useful feature domain. This process improves the representation of fault features under non-ideal sensor data conditions, such as noise interference and data defects, thereby enhancing the FDMs robustness. Finally, under non-ideal sensor data conditions, comparative experiments with advanced fault diagnostic methods demonstrate that the proposed method exhibits minimal fluctuations in diagnostic accuracy and achieves the highest correctness rate, validating its robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3375958</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8222-7799</orcidid><orcidid>https://orcid.org/0000-0001-9188-4179</orcidid><orcidid>https://orcid.org/0009-0002-7576-8789</orcidid><orcidid>https://orcid.org/0000-0002-7445-7121</orcidid><orcidid>https://orcid.org/0000-0003-1233-1774</orcidid><orcidid>https://orcid.org/0000-0003-2324-4916</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_3015058559 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Accuracy Artificial intelligence Background noise Data models Deep learning Diagnostic systems Fault diagnosis Interference Mapping Remote sensors Robustness Robustness (mathematics) sensor failure Sensors Training wind turbine Wind turbines |
title | Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Feature%20Reinforcement%20Network%20for%20Robust%20Remote%20Fault%20Diagnosis%20of%20Wind%20Turbine%20Bearing%20Under%20Non-Ideal%20Sensor%20Data&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Tan,%20Jinbiao&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3375958&rft_dat=%3Cproquest_ieee_%3E3015058559%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-7cafed1ede65b4d02054476822526252d7b32baca517e2737f0661098e0c399a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3015058559&rft_id=info:pmid/&rft_ieee_id=10466600&rfr_iscdi=true |