Loading…
Analysis and computation of multidimensional linear complexity of periodic arrays
Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the defi...
Saved in:
Published in: | Designs, codes, and cryptography codes, and cryptography, 2024-03, Vol.92 (3), p.709-722 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503 |
container_end_page | 722 |
container_issue | 3 |
container_start_page | 709 |
container_title | Designs, codes, and cryptography |
container_volume | 92 |
creator | Arce, Rafael Hernández, Carlos Ortiz, José Rubio, Ivelisse Torres, Jaziel |
description | Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in Arce-Nazario et al. (Appl. Algebra Eng Commun Comput 31(1):43–63, 2020), Gomez-Perez et al. (2015 IEEE International Symposium on Information Theory, pp 2697–2701, 2015) and Moreno et al. (US Provisional Patent Applications, 2015). The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the “unfolding method” does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity. |
doi_str_mv | 10.1007/s10623-023-01274-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3015442587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015442587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54KnqOTpEm6x2XxCxZE0HNI06lk6ZdJy9r_3tYK3jw8Zhh-7zE8Qq4Z3DIAfRcZKC4ozGJcp_R4QlZMakG1zNQpWcGGS8qA83NyEeMBAJgAviKv28ZWY_QxsU2RuLbuht72vm2Stkzqoep94Wts4nSxVVL5Bm34wSr88v04Ux0G3xbeJTYEO8ZLclbaKuLV71yT94f7t90T3b88Pu-2e-q4hp7mzhVOoUDJtc7SjbaSpYhClzJNUWKmlRJKMZ5tJBbTyjOnOKZlXtg8kyDW5GbJ7UL7OWDszaEdwvRlNALYFMJlpieKL5QLbYwBS9MFX9swGgZmrs4s1RmYNVdnjpNJLKY4wc0Hhr_of1zf33lypw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015442587</pqid></control><display><type>article</type><title>Analysis and computation of multidimensional linear complexity of periodic arrays</title><source>Springer Nature</source><creator>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</creator><creatorcontrib>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</creatorcontrib><description>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in Arce-Nazario et al. (Appl. Algebra Eng Commun Comput 31(1):43–63, 2020), Gomez-Perez et al. (2015 IEEE International Symposium on Information Theory, pp 2697–2701, 2015) and Moreno et al. (US Provisional Patent Applications, 2015). The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the “unfolding method” does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-023-01274-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Asymptotic methods ; Asymptotic properties ; Coding and Cryptography 2022 ; Coding and Information Theory ; Complexity ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Information theory ; Open source software ; Patent applications</subject><ispartof>Designs, codes, and cryptography, 2024-03, Vol.92 (3), p.709-722</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503</cites><orcidid>0000-0001-5183-0256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Arce, Rafael</creatorcontrib><creatorcontrib>Hernández, Carlos</creatorcontrib><creatorcontrib>Ortiz, José</creatorcontrib><creatorcontrib>Rubio, Ivelisse</creatorcontrib><creatorcontrib>Torres, Jaziel</creatorcontrib><title>Analysis and computation of multidimensional linear complexity of periodic arrays</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in Arce-Nazario et al. (Appl. Algebra Eng Commun Comput 31(1):43–63, 2020), Gomez-Perez et al. (2015 IEEE International Symposium on Information Theory, pp 2697–2701, 2015) and Moreno et al. (US Provisional Patent Applications, 2015). The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the “unfolding method” does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</description><subject>Arrays</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Coding and Cryptography 2022</subject><subject>Coding and Information Theory</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Information theory</subject><subject>Open source software</subject><subject>Patent applications</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A54KnqOTpEm6x2XxCxZE0HNI06lk6ZdJy9r_3tYK3jw8Zhh-7zE8Qq4Z3DIAfRcZKC4ozGJcp_R4QlZMakG1zNQpWcGGS8qA83NyEeMBAJgAviKv28ZWY_QxsU2RuLbuht72vm2Stkzqoep94Wts4nSxVVL5Bm34wSr88v04Ux0G3xbeJTYEO8ZLclbaKuLV71yT94f7t90T3b88Pu-2e-q4hp7mzhVOoUDJtc7SjbaSpYhClzJNUWKmlRJKMZ5tJBbTyjOnOKZlXtg8kyDW5GbJ7UL7OWDszaEdwvRlNALYFMJlpieKL5QLbYwBS9MFX9swGgZmrs4s1RmYNVdnjpNJLKY4wc0Hhr_of1zf33lypw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Arce, Rafael</creator><creator>Hernández, Carlos</creator><creator>Ortiz, José</creator><creator>Rubio, Ivelisse</creator><creator>Torres, Jaziel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5183-0256</orcidid></search><sort><creationdate>20240301</creationdate><title>Analysis and computation of multidimensional linear complexity of periodic arrays</title><author>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Coding and Cryptography 2022</topic><topic>Coding and Information Theory</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Information theory</topic><topic>Open source software</topic><topic>Patent applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arce, Rafael</creatorcontrib><creatorcontrib>Hernández, Carlos</creatorcontrib><creatorcontrib>Ortiz, José</creatorcontrib><creatorcontrib>Rubio, Ivelisse</creatorcontrib><creatorcontrib>Torres, Jaziel</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arce, Rafael</au><au>Hernández, Carlos</au><au>Ortiz, José</au><au>Rubio, Ivelisse</au><au>Torres, Jaziel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and computation of multidimensional linear complexity of periodic arrays</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>92</volume><issue>3</issue><spage>709</spage><epage>722</epage><pages>709-722</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in Arce-Nazario et al. (Appl. Algebra Eng Commun Comput 31(1):43–63, 2020), Gomez-Perez et al. (2015 IEEE International Symposium on Information Theory, pp 2697–2701, 2015) and Moreno et al. (US Provisional Patent Applications, 2015). The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the “unfolding method” does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-023-01274-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5183-0256</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2024-03, Vol.92 (3), p.709-722 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_proquest_journals_3015442587 |
source | Springer Nature |
subjects | Arrays Asymptotic methods Asymptotic properties Coding and Cryptography 2022 Coding and Information Theory Complexity Computer Science Cryptology Discrete Mathematics in Computer Science Information theory Open source software Patent applications |
title | Analysis and computation of multidimensional linear complexity of periodic arrays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20computation%20of%20multidimensional%20linear%20complexity%20of%20periodic%20arrays&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Arce,%20Rafael&rft.date=2024-03-01&rft.volume=92&rft.issue=3&rft.spage=709&rft.epage=722&rft.pages=709-722&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-023-01274-w&rft_dat=%3Cproquest_cross%3E3015442587%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3015442587&rft_id=info:pmid/&rfr_iscdi=true |