Loading…

Analysis and computation of multidimensional linear complexity of periodic arrays

Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the defi...

Full description

Saved in:
Bibliographic Details
Published in:Designs, codes, and cryptography codes, and cryptography, 2024-03, Vol.92 (3), p.709-722
Main Authors: Arce, Rafael, Hernández, Carlos, Ortiz, José, Rubio, Ivelisse, Torres, Jaziel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503
container_end_page 722
container_issue 3
container_start_page 709
container_title Designs, codes, and cryptography
container_volume 92
creator Arce, Rafael
Hernández, Carlos
Ortiz, José
Rubio, Ivelisse
Torres, Jaziel
description Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in Arce-Nazario et al. (Appl. Algebra Eng Commun Comput 31(1):43–63, 2020), Gomez-Perez et al. (2015 IEEE International Symposium on Information Theory, pp 2697–2701, 2015) and Moreno et al. (US Provisional Patent Applications, 2015). The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the “unfolding method” does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.
doi_str_mv 10.1007/s10623-023-01274-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3015442587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3015442587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54KnqOTpEm6x2XxCxZE0HNI06lk6ZdJy9r_3tYK3jw8Zhh-7zE8Qq4Z3DIAfRcZKC4ozGJcp_R4QlZMakG1zNQpWcGGS8qA83NyEeMBAJgAviKv28ZWY_QxsU2RuLbuht72vm2Stkzqoep94Wts4nSxVVL5Bm34wSr88v04Ux0G3xbeJTYEO8ZLclbaKuLV71yT94f7t90T3b88Pu-2e-q4hp7mzhVOoUDJtc7SjbaSpYhClzJNUWKmlRJKMZ5tJBbTyjOnOKZlXtg8kyDW5GbJ7UL7OWDszaEdwvRlNALYFMJlpieKL5QLbYwBS9MFX9swGgZmrs4s1RmYNVdnjpNJLKY4wc0Hhr_of1zf33lypw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3015442587</pqid></control><display><type>article</type><title>Analysis and computation of multidimensional linear complexity of periodic arrays</title><source>Springer Nature</source><creator>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</creator><creatorcontrib>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</creatorcontrib><description>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in Arce-Nazario et al. (Appl. Algebra Eng Commun Comput 31(1):43–63, 2020), Gomez-Perez et al. (2015 IEEE International Symposium on Information Theory, pp 2697–2701, 2015) and Moreno et al. (US Provisional Patent Applications, 2015). The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the “unfolding method” does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-023-01274-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Asymptotic methods ; Asymptotic properties ; Coding and Cryptography 2022 ; Coding and Information Theory ; Complexity ; Computer Science ; Cryptology ; Discrete Mathematics in Computer Science ; Information theory ; Open source software ; Patent applications</subject><ispartof>Designs, codes, and cryptography, 2024-03, Vol.92 (3), p.709-722</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503</cites><orcidid>0000-0001-5183-0256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Arce, Rafael</creatorcontrib><creatorcontrib>Hernández, Carlos</creatorcontrib><creatorcontrib>Ortiz, José</creatorcontrib><creatorcontrib>Rubio, Ivelisse</creatorcontrib><creatorcontrib>Torres, Jaziel</creatorcontrib><title>Analysis and computation of multidimensional linear complexity of periodic arrays</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in Arce-Nazario et al. (Appl. Algebra Eng Commun Comput 31(1):43–63, 2020), Gomez-Perez et al. (2015 IEEE International Symposium on Information Theory, pp 2697–2701, 2015) and Moreno et al. (US Provisional Patent Applications, 2015). The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the “unfolding method” does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</description><subject>Arrays</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Coding and Cryptography 2022</subject><subject>Coding and Information Theory</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Information theory</subject><subject>Open source software</subject><subject>Patent applications</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A54KnqOTpEm6x2XxCxZE0HNI06lk6ZdJy9r_3tYK3jw8Zhh-7zE8Qq4Z3DIAfRcZKC4ozGJcp_R4QlZMakG1zNQpWcGGS8qA83NyEeMBAJgAviKv28ZWY_QxsU2RuLbuht72vm2Stkzqoep94Wts4nSxVVL5Bm34wSr88v04Ux0G3xbeJTYEO8ZLclbaKuLV71yT94f7t90T3b88Pu-2e-q4hp7mzhVOoUDJtc7SjbaSpYhClzJNUWKmlRJKMZ5tJBbTyjOnOKZlXtg8kyDW5GbJ7UL7OWDszaEdwvRlNALYFMJlpieKL5QLbYwBS9MFX9swGgZmrs4s1RmYNVdnjpNJLKY4wc0Hhr_of1zf33lypw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Arce, Rafael</creator><creator>Hernández, Carlos</creator><creator>Ortiz, José</creator><creator>Rubio, Ivelisse</creator><creator>Torres, Jaziel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5183-0256</orcidid></search><sort><creationdate>20240301</creationdate><title>Analysis and computation of multidimensional linear complexity of periodic arrays</title><author>Arce, Rafael ; Hernández, Carlos ; Ortiz, José ; Rubio, Ivelisse ; Torres, Jaziel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Coding and Cryptography 2022</topic><topic>Coding and Information Theory</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Information theory</topic><topic>Open source software</topic><topic>Patent applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arce, Rafael</creatorcontrib><creatorcontrib>Hernández, Carlos</creatorcontrib><creatorcontrib>Ortiz, José</creatorcontrib><creatorcontrib>Rubio, Ivelisse</creatorcontrib><creatorcontrib>Torres, Jaziel</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arce, Rafael</au><au>Hernández, Carlos</au><au>Ortiz, José</au><au>Rubio, Ivelisse</au><au>Torres, Jaziel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and computation of multidimensional linear complexity of periodic arrays</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>92</volume><issue>3</issue><spage>709</spage><epage>722</epage><pages>709-722</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Linear complexity is an important parameter for arrays that are used in applications related to information security. In this work we survey constructions of two and three dimensional arrays, and present new results on the multidimensional linear complexity of periodic arrays obtained using the definition and method proposed in Arce-Nazario et al. (Appl. Algebra Eng Commun Comput 31(1):43–63, 2020), Gomez-Perez et al. (2015 IEEE International Symposium on Information Theory, pp 2697–2701, 2015) and Moreno et al. (US Provisional Patent Applications, 2015). The results include a generalization of a bound for the linear complexity, a comparison with the measure of complexity for multisequences, and computations of the complexity of arrays with periods that are not relatively prime for which the “unfolding method” does not work. Conjectures for exact formulas and the asymptotic behavior of the complexity of some array constructions are formulated. We also present open source software for constructing multidimensional arrays and for computing their multidimensional linear complexity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-023-01274-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5183-0256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2024-03, Vol.92 (3), p.709-722
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_3015442587
source Springer Nature
subjects Arrays
Asymptotic methods
Asymptotic properties
Coding and Cryptography 2022
Coding and Information Theory
Complexity
Computer Science
Cryptology
Discrete Mathematics in Computer Science
Information theory
Open source software
Patent applications
title Analysis and computation of multidimensional linear complexity of periodic arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20computation%20of%20multidimensional%20linear%20complexity%20of%20periodic%20arrays&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Arce,%20Rafael&rft.date=2024-03-01&rft.volume=92&rft.issue=3&rft.spage=709&rft.epage=722&rft.pages=709-722&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-023-01274-w&rft_dat=%3Cproquest_cross%3E3015442587%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-bccdc6e3e52778497a514ee37f544e5e876636612895ed63628c62e4fbdab8503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3015442587&rft_id=info:pmid/&rfr_iscdi=true