Loading…

BLF-based neural dynamic surface control for stochastic nonlinear systems with time delays and full-state constraints

This paper investigates the adaptive neural tracking control problem for a class of stochastic nonlinear systems with time delays and full-state constraints in a unified framework for the first time. The time-delay terms of the controlled systems are compensated by novel Lyapunov-Krasovskii function...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control 2024-05, Vol.97 (5), p.982-998
Main Author: Shu, Yanjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the adaptive neural tracking control problem for a class of stochastic nonlinear systems with time delays and full-state constraints in a unified framework for the first time. The time-delay terms of the controlled systems are compensated by novel Lyapunov-Krasovskii functionals. The asymmetric barrier Lyapunov function (BLF) is adopted to guarantee that the full states are always restricted within prescribed constraints. RBF neural networks are utilised to approximate the lumped unknown functions in the design process. Furthermore, the dynamic surface control (DSC) technique is employed to simplify the process of control design significantly. Stability analysis shows all closed-loop signals are SGUUB, and full-state constraints are not violated. Finally, simulation results confirm the effectiveness of the proposed control scheme.
ISSN:0020-7179
1366-5820
DOI:10.1080/00207179.2023.2188432