Loading…

MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating

The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-04, Vol.34 (14), p.n/a
Main Authors: Bi, Lingyi, Perry, William, Wang, Ruocun (John), Lord, Robert, Hryhorchuk, Tetiana, Inman, Alex, Gogotsi, Oleksiy, Balitskiy, Vitaliy, Zahorodna, Veronika, Baginskiy, Ivan, Vorotilo, Stepan, Gogotsi, Yury
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23
container_end_page n/a
container_issue 14
container_start_page
container_title Advanced functional materials
container_volume 34
creator Bi, Lingyi
Perry, William
Wang, Ruocun (John)
Lord, Robert
Hryhorchuk, Tetiana
Inman, Alex
Gogotsi, Oleksiy
Balitskiy, Vitaliy
Zahorodna, Veronika
Baginskiy, Ivan
Vorotilo, Stepan
Gogotsi, Yury
description The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles through simple dip coating. However, manual development of MXene‐coated textiles restricts their quality, quantity, and variety. Here, a versatile automated yarn dip coater tailored for producing continuously high‐quality MXene‐coated yarns and conducted the most comprehensive MXene‐yarn dip coating study to date is developed. Compared to manual methods, the automated coater provides lower resistance, superior uniformity, faster speed, and reduced MXene consumption. It also enables rapid coating parameter optimization, resulting in a thin Ti3C2 coating uniform over a 1 km length on a braided Kevlar yarn while preserving its excellent mechanical properties (over 800 MPa) and adding Joule heating and damage sensing to composites reinforced by the yarns. By dip‐coating five different yarns of varying materials, diameters, structures, and chemistries, new insights into MXene‐yarn interactions are gained. Thus, the automated dip coating presents ample opportunities for scalable integration of MXenes into a wide range of yarns for diverse functions and applications. The IoT's growth fuels research on MXene integration into textiles. The automated yarn dip coater exceeds manual methods, providing lower resistance, superior uniformity, faster speed, and reduced MXene consumption across multiple yarns. It swiftly optimizes coatings for specific applications, demonstrated on a braided Kevlar yarn for Joule heating and strain sensing in composites.
doi_str_mv 10.1002/adfm.202312434
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030975538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030975538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23</originalsourceid><addsrcrecordid>eNqFkMFLwzAYxYMoOKdXzwGvdn7JlybtcWxWxQ0vCvMUsjaRjq6dSTuZf70dk3n09L0Hv_fxeIRcMxgxAH5nCrceceDIuEBxQgZMMhkh8OT0qNninFyEsAJgSqEYkGy-sLWlWVfnbdnUpiq_bUGf7bYynr4bX9Ntaei4a5u1aW1xSydN3ZZ113SBTstNb01vPy7JmTNVsFe_d0jesvvXyWM0e3l4moxnUc4VF5GVEh1PIBFpmppCKYZMxomTvO8N8dJKcErlRqgcDSRMOEAjE5QYS1wajkNyc_i78c1nZ0OrV03n-9pBIyCkKo4x6anRgcp9E4K3Tm98uTZ-pxno_VZ6v5U-btUH0kPgq6zs7h9aj6fZ_C_7A53mawc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030975538</pqid></control><display><type>article</type><title>MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bi, Lingyi ; Perry, William ; Wang, Ruocun (John) ; Lord, Robert ; Hryhorchuk, Tetiana ; Inman, Alex ; Gogotsi, Oleksiy ; Balitskiy, Vitaliy ; Zahorodna, Veronika ; Baginskiy, Ivan ; Vorotilo, Stepan ; Gogotsi, Yury</creator><creatorcontrib>Bi, Lingyi ; Perry, William ; Wang, Ruocun (John) ; Lord, Robert ; Hryhorchuk, Tetiana ; Inman, Alex ; Gogotsi, Oleksiy ; Balitskiy, Vitaliy ; Zahorodna, Veronika ; Baginskiy, Ivan ; Vorotilo, Stepan ; Gogotsi, Yury</creatorcontrib><description>The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles through simple dip coating. However, manual development of MXene‐coated textiles restricts their quality, quantity, and variety. Here, a versatile automated yarn dip coater tailored for producing continuously high‐quality MXene‐coated yarns and conducted the most comprehensive MXene‐yarn dip coating study to date is developed. Compared to manual methods, the automated coater provides lower resistance, superior uniformity, faster speed, and reduced MXene consumption. It also enables rapid coating parameter optimization, resulting in a thin Ti3C2 coating uniform over a 1 km length on a braided Kevlar yarn while preserving its excellent mechanical properties (over 800 MPa) and adding Joule heating and damage sensing to composites reinforced by the yarns. By dip‐coating five different yarns of varying materials, diameters, structures, and chemistries, new insights into MXene‐yarn interactions are gained. Thus, the automated dip coating presents ample opportunities for scalable integration of MXenes into a wide range of yarns for diverse functions and applications. The IoT's growth fuels research on MXene integration into textiles. The automated yarn dip coater exceeds manual methods, providing lower resistance, superior uniformity, faster speed, and reduced MXene consumption across multiple yarns. It swiftly optimizes coatings for specific applications, demonstrated on a braided Kevlar yarn for Joule heating and strain sensing in composites.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202312434</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aramid fibers ; Automation ; dip coating ; Electrical resistivity ; Energy storage ; Immersion coating ; Internet of Things ; Kevlar (trademark) ; Mechanical properties ; multifunctional yarns ; MXene ; MXenes ; Ohmic dissipation ; Resistance heating ; smart composites ; smart textiles ; strain sensing ; Textiles ; Yarn ; Yarns</subject><ispartof>Advanced functional materials, 2024-04, Vol.34 (14), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23</cites><orcidid>0000-0001-5030-6903 ; 0000-0003-1487-1598 ; 0000-0001-5998-2617 ; 0000-0003-3486-1549 ; 0000-0001-9423-4032 ; 0000-0001-8095-5285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bi, Lingyi</creatorcontrib><creatorcontrib>Perry, William</creatorcontrib><creatorcontrib>Wang, Ruocun (John)</creatorcontrib><creatorcontrib>Lord, Robert</creatorcontrib><creatorcontrib>Hryhorchuk, Tetiana</creatorcontrib><creatorcontrib>Inman, Alex</creatorcontrib><creatorcontrib>Gogotsi, Oleksiy</creatorcontrib><creatorcontrib>Balitskiy, Vitaliy</creatorcontrib><creatorcontrib>Zahorodna, Veronika</creatorcontrib><creatorcontrib>Baginskiy, Ivan</creatorcontrib><creatorcontrib>Vorotilo, Stepan</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><title>MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating</title><title>Advanced functional materials</title><description>The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles through simple dip coating. However, manual development of MXene‐coated textiles restricts their quality, quantity, and variety. Here, a versatile automated yarn dip coater tailored for producing continuously high‐quality MXene‐coated yarns and conducted the most comprehensive MXene‐yarn dip coating study to date is developed. Compared to manual methods, the automated coater provides lower resistance, superior uniformity, faster speed, and reduced MXene consumption. It also enables rapid coating parameter optimization, resulting in a thin Ti3C2 coating uniform over a 1 km length on a braided Kevlar yarn while preserving its excellent mechanical properties (over 800 MPa) and adding Joule heating and damage sensing to composites reinforced by the yarns. By dip‐coating five different yarns of varying materials, diameters, structures, and chemistries, new insights into MXene‐yarn interactions are gained. Thus, the automated dip coating presents ample opportunities for scalable integration of MXenes into a wide range of yarns for diverse functions and applications. The IoT's growth fuels research on MXene integration into textiles. The automated yarn dip coater exceeds manual methods, providing lower resistance, superior uniformity, faster speed, and reduced MXene consumption across multiple yarns. It swiftly optimizes coatings for specific applications, demonstrated on a braided Kevlar yarn for Joule heating and strain sensing in composites.</description><subject>Aramid fibers</subject><subject>Automation</subject><subject>dip coating</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Immersion coating</subject><subject>Internet of Things</subject><subject>Kevlar (trademark)</subject><subject>Mechanical properties</subject><subject>multifunctional yarns</subject><subject>MXene</subject><subject>MXenes</subject><subject>Ohmic dissipation</subject><subject>Resistance heating</subject><subject>smart composites</subject><subject>smart textiles</subject><subject>strain sensing</subject><subject>Textiles</subject><subject>Yarn</subject><subject>Yarns</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAYxYMoOKdXzwGvdn7JlybtcWxWxQ0vCvMUsjaRjq6dSTuZf70dk3n09L0Hv_fxeIRcMxgxAH5nCrceceDIuEBxQgZMMhkh8OT0qNninFyEsAJgSqEYkGy-sLWlWVfnbdnUpiq_bUGf7bYynr4bX9Ntaei4a5u1aW1xSydN3ZZ113SBTstNb01vPy7JmTNVsFe_d0jesvvXyWM0e3l4moxnUc4VF5GVEh1PIBFpmppCKYZMxomTvO8N8dJKcErlRqgcDSRMOEAjE5QYS1wajkNyc_i78c1nZ0OrV03n-9pBIyCkKo4x6anRgcp9E4K3Tm98uTZ-pxno_VZ6v5U-btUH0kPgq6zs7h9aj6fZ_C_7A53mawc</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bi, Lingyi</creator><creator>Perry, William</creator><creator>Wang, Ruocun (John)</creator><creator>Lord, Robert</creator><creator>Hryhorchuk, Tetiana</creator><creator>Inman, Alex</creator><creator>Gogotsi, Oleksiy</creator><creator>Balitskiy, Vitaliy</creator><creator>Zahorodna, Veronika</creator><creator>Baginskiy, Ivan</creator><creator>Vorotilo, Stepan</creator><creator>Gogotsi, Yury</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5030-6903</orcidid><orcidid>https://orcid.org/0000-0003-1487-1598</orcidid><orcidid>https://orcid.org/0000-0001-5998-2617</orcidid><orcidid>https://orcid.org/0000-0003-3486-1549</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0001-8095-5285</orcidid></search><sort><creationdate>20240401</creationdate><title>MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating</title><author>Bi, Lingyi ; Perry, William ; Wang, Ruocun (John) ; Lord, Robert ; Hryhorchuk, Tetiana ; Inman, Alex ; Gogotsi, Oleksiy ; Balitskiy, Vitaliy ; Zahorodna, Veronika ; Baginskiy, Ivan ; Vorotilo, Stepan ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aramid fibers</topic><topic>Automation</topic><topic>dip coating</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Immersion coating</topic><topic>Internet of Things</topic><topic>Kevlar (trademark)</topic><topic>Mechanical properties</topic><topic>multifunctional yarns</topic><topic>MXene</topic><topic>MXenes</topic><topic>Ohmic dissipation</topic><topic>Resistance heating</topic><topic>smart composites</topic><topic>smart textiles</topic><topic>strain sensing</topic><topic>Textiles</topic><topic>Yarn</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Lingyi</creatorcontrib><creatorcontrib>Perry, William</creatorcontrib><creatorcontrib>Wang, Ruocun (John)</creatorcontrib><creatorcontrib>Lord, Robert</creatorcontrib><creatorcontrib>Hryhorchuk, Tetiana</creatorcontrib><creatorcontrib>Inman, Alex</creatorcontrib><creatorcontrib>Gogotsi, Oleksiy</creatorcontrib><creatorcontrib>Balitskiy, Vitaliy</creatorcontrib><creatorcontrib>Zahorodna, Veronika</creatorcontrib><creatorcontrib>Baginskiy, Ivan</creatorcontrib><creatorcontrib>Vorotilo, Stepan</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Lingyi</au><au>Perry, William</au><au>Wang, Ruocun (John)</au><au>Lord, Robert</au><au>Hryhorchuk, Tetiana</au><au>Inman, Alex</au><au>Gogotsi, Oleksiy</au><au>Balitskiy, Vitaliy</au><au>Zahorodna, Veronika</au><au>Baginskiy, Ivan</au><au>Vorotilo, Stepan</au><au>Gogotsi, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating</atitle><jtitle>Advanced functional materials</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><issue>14</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles through simple dip coating. However, manual development of MXene‐coated textiles restricts their quality, quantity, and variety. Here, a versatile automated yarn dip coater tailored for producing continuously high‐quality MXene‐coated yarns and conducted the most comprehensive MXene‐yarn dip coating study to date is developed. Compared to manual methods, the automated coater provides lower resistance, superior uniformity, faster speed, and reduced MXene consumption. It also enables rapid coating parameter optimization, resulting in a thin Ti3C2 coating uniform over a 1 km length on a braided Kevlar yarn while preserving its excellent mechanical properties (over 800 MPa) and adding Joule heating and damage sensing to composites reinforced by the yarns. By dip‐coating five different yarns of varying materials, diameters, structures, and chemistries, new insights into MXene‐yarn interactions are gained. Thus, the automated dip coating presents ample opportunities for scalable integration of MXenes into a wide range of yarns for diverse functions and applications. The IoT's growth fuels research on MXene integration into textiles. The automated yarn dip coater exceeds manual methods, providing lower resistance, superior uniformity, faster speed, and reduced MXene consumption across multiple yarns. It swiftly optimizes coatings for specific applications, demonstrated on a braided Kevlar yarn for Joule heating and strain sensing in composites.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202312434</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5030-6903</orcidid><orcidid>https://orcid.org/0000-0003-1487-1598</orcidid><orcidid>https://orcid.org/0000-0001-5998-2617</orcidid><orcidid>https://orcid.org/0000-0003-3486-1549</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0001-8095-5285</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-04, Vol.34 (14), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3030975538
source Wiley-Blackwell Read & Publish Collection
subjects Aramid fibers
Automation
dip coating
Electrical resistivity
Energy storage
Immersion coating
Internet of Things
Kevlar (trademark)
Mechanical properties
multifunctional yarns
MXene
MXenes
Ohmic dissipation
Resistance heating
smart composites
smart textiles
strain sensing
Textiles
Yarn
Yarns
title MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MXene%20Functionalized%20Kevlar%20Yarn%20via%20Automated,%20Continuous%20Dip%20Coating&rft.jtitle=Advanced%20functional%20materials&rft.au=Bi,%20Lingyi&rft.date=2024-04-01&rft.volume=34&rft.issue=14&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202312434&rft_dat=%3Cproquest_cross%3E3030975538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3030975538&rft_id=info:pmid/&rfr_iscdi=true