Loading…
MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating
The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add...
Saved in:
Published in: | Advanced functional materials 2024-04, Vol.34 (14), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23 |
container_end_page | n/a |
container_issue | 14 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Bi, Lingyi Perry, William Wang, Ruocun (John) Lord, Robert Hryhorchuk, Tetiana Inman, Alex Gogotsi, Oleksiy Balitskiy, Vitaliy Zahorodna, Veronika Baginskiy, Ivan Vorotilo, Stepan Gogotsi, Yury |
description | The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles through simple dip coating. However, manual development of MXene‐coated textiles restricts their quality, quantity, and variety. Here, a versatile automated yarn dip coater tailored for producing continuously high‐quality MXene‐coated yarns and conducted the most comprehensive MXene‐yarn dip coating study to date is developed. Compared to manual methods, the automated coater provides lower resistance, superior uniformity, faster speed, and reduced MXene consumption. It also enables rapid coating parameter optimization, resulting in a thin Ti3C2 coating uniform over a 1 km length on a braided Kevlar yarn while preserving its excellent mechanical properties (over 800 MPa) and adding Joule heating and damage sensing to composites reinforced by the yarns. By dip‐coating five different yarns of varying materials, diameters, structures, and chemistries, new insights into MXene‐yarn interactions are gained. Thus, the automated dip coating presents ample opportunities for scalable integration of MXenes into a wide range of yarns for diverse functions and applications.
The IoT's growth fuels research on MXene integration into textiles. The automated yarn dip coater exceeds manual methods, providing lower resistance, superior uniformity, faster speed, and reduced MXene consumption across multiple yarns. It swiftly optimizes coatings for specific applications, demonstrated on a braided Kevlar yarn for Joule heating and strain sensing in composites. |
doi_str_mv | 10.1002/adfm.202312434 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3030975538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3030975538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23</originalsourceid><addsrcrecordid>eNqFkMFLwzAYxYMoOKdXzwGvdn7JlybtcWxWxQ0vCvMUsjaRjq6dSTuZf70dk3n09L0Hv_fxeIRcMxgxAH5nCrceceDIuEBxQgZMMhkh8OT0qNninFyEsAJgSqEYkGy-sLWlWVfnbdnUpiq_bUGf7bYynr4bX9Ntaei4a5u1aW1xSydN3ZZ113SBTstNb01vPy7JmTNVsFe_d0jesvvXyWM0e3l4moxnUc4VF5GVEh1PIBFpmppCKYZMxomTvO8N8dJKcErlRqgcDSRMOEAjE5QYS1wajkNyc_i78c1nZ0OrV03n-9pBIyCkKo4x6anRgcp9E4K3Tm98uTZ-pxno_VZ6v5U-btUH0kPgq6zs7h9aj6fZ_C_7A53mawc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030975538</pqid></control><display><type>article</type><title>MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bi, Lingyi ; Perry, William ; Wang, Ruocun (John) ; Lord, Robert ; Hryhorchuk, Tetiana ; Inman, Alex ; Gogotsi, Oleksiy ; Balitskiy, Vitaliy ; Zahorodna, Veronika ; Baginskiy, Ivan ; Vorotilo, Stepan ; Gogotsi, Yury</creator><creatorcontrib>Bi, Lingyi ; Perry, William ; Wang, Ruocun (John) ; Lord, Robert ; Hryhorchuk, Tetiana ; Inman, Alex ; Gogotsi, Oleksiy ; Balitskiy, Vitaliy ; Zahorodna, Veronika ; Baginskiy, Ivan ; Vorotilo, Stepan ; Gogotsi, Yury</creatorcontrib><description>The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles through simple dip coating. However, manual development of MXene‐coated textiles restricts their quality, quantity, and variety. Here, a versatile automated yarn dip coater tailored for producing continuously high‐quality MXene‐coated yarns and conducted the most comprehensive MXene‐yarn dip coating study to date is developed. Compared to manual methods, the automated coater provides lower resistance, superior uniformity, faster speed, and reduced MXene consumption. It also enables rapid coating parameter optimization, resulting in a thin Ti3C2 coating uniform over a 1 km length on a braided Kevlar yarn while preserving its excellent mechanical properties (over 800 MPa) and adding Joule heating and damage sensing to composites reinforced by the yarns. By dip‐coating five different yarns of varying materials, diameters, structures, and chemistries, new insights into MXene‐yarn interactions are gained. Thus, the automated dip coating presents ample opportunities for scalable integration of MXenes into a wide range of yarns for diverse functions and applications.
The IoT's growth fuels research on MXene integration into textiles. The automated yarn dip coater exceeds manual methods, providing lower resistance, superior uniformity, faster speed, and reduced MXene consumption across multiple yarns. It swiftly optimizes coatings for specific applications, demonstrated on a braided Kevlar yarn for Joule heating and strain sensing in composites.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202312434</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aramid fibers ; Automation ; dip coating ; Electrical resistivity ; Energy storage ; Immersion coating ; Internet of Things ; Kevlar (trademark) ; Mechanical properties ; multifunctional yarns ; MXene ; MXenes ; Ohmic dissipation ; Resistance heating ; smart composites ; smart textiles ; strain sensing ; Textiles ; Yarn ; Yarns</subject><ispartof>Advanced functional materials, 2024-04, Vol.34 (14), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23</cites><orcidid>0000-0001-5030-6903 ; 0000-0003-1487-1598 ; 0000-0001-5998-2617 ; 0000-0003-3486-1549 ; 0000-0001-9423-4032 ; 0000-0001-8095-5285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bi, Lingyi</creatorcontrib><creatorcontrib>Perry, William</creatorcontrib><creatorcontrib>Wang, Ruocun (John)</creatorcontrib><creatorcontrib>Lord, Robert</creatorcontrib><creatorcontrib>Hryhorchuk, Tetiana</creatorcontrib><creatorcontrib>Inman, Alex</creatorcontrib><creatorcontrib>Gogotsi, Oleksiy</creatorcontrib><creatorcontrib>Balitskiy, Vitaliy</creatorcontrib><creatorcontrib>Zahorodna, Veronika</creatorcontrib><creatorcontrib>Baginskiy, Ivan</creatorcontrib><creatorcontrib>Vorotilo, Stepan</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><title>MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating</title><title>Advanced functional materials</title><description>The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles through simple dip coating. However, manual development of MXene‐coated textiles restricts their quality, quantity, and variety. Here, a versatile automated yarn dip coater tailored for producing continuously high‐quality MXene‐coated yarns and conducted the most comprehensive MXene‐yarn dip coating study to date is developed. Compared to manual methods, the automated coater provides lower resistance, superior uniformity, faster speed, and reduced MXene consumption. It also enables rapid coating parameter optimization, resulting in a thin Ti3C2 coating uniform over a 1 km length on a braided Kevlar yarn while preserving its excellent mechanical properties (over 800 MPa) and adding Joule heating and damage sensing to composites reinforced by the yarns. By dip‐coating five different yarns of varying materials, diameters, structures, and chemistries, new insights into MXene‐yarn interactions are gained. Thus, the automated dip coating presents ample opportunities for scalable integration of MXenes into a wide range of yarns for diverse functions and applications.
The IoT's growth fuels research on MXene integration into textiles. The automated yarn dip coater exceeds manual methods, providing lower resistance, superior uniformity, faster speed, and reduced MXene consumption across multiple yarns. It swiftly optimizes coatings for specific applications, demonstrated on a braided Kevlar yarn for Joule heating and strain sensing in composites.</description><subject>Aramid fibers</subject><subject>Automation</subject><subject>dip coating</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Immersion coating</subject><subject>Internet of Things</subject><subject>Kevlar (trademark)</subject><subject>Mechanical properties</subject><subject>multifunctional yarns</subject><subject>MXene</subject><subject>MXenes</subject><subject>Ohmic dissipation</subject><subject>Resistance heating</subject><subject>smart composites</subject><subject>smart textiles</subject><subject>strain sensing</subject><subject>Textiles</subject><subject>Yarn</subject><subject>Yarns</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAYxYMoOKdXzwGvdn7JlybtcWxWxQ0vCvMUsjaRjq6dSTuZf70dk3n09L0Hv_fxeIRcMxgxAH5nCrceceDIuEBxQgZMMhkh8OT0qNninFyEsAJgSqEYkGy-sLWlWVfnbdnUpiq_bUGf7bYynr4bX9Ntaei4a5u1aW1xSydN3ZZ113SBTstNb01vPy7JmTNVsFe_d0jesvvXyWM0e3l4moxnUc4VF5GVEh1PIBFpmppCKYZMxomTvO8N8dJKcErlRqgcDSRMOEAjE5QYS1wajkNyc_i78c1nZ0OrV03n-9pBIyCkKo4x6anRgcp9E4K3Tm98uTZ-pxno_VZ6v5U-btUH0kPgq6zs7h9aj6fZ_C_7A53mawc</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bi, Lingyi</creator><creator>Perry, William</creator><creator>Wang, Ruocun (John)</creator><creator>Lord, Robert</creator><creator>Hryhorchuk, Tetiana</creator><creator>Inman, Alex</creator><creator>Gogotsi, Oleksiy</creator><creator>Balitskiy, Vitaliy</creator><creator>Zahorodna, Veronika</creator><creator>Baginskiy, Ivan</creator><creator>Vorotilo, Stepan</creator><creator>Gogotsi, Yury</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5030-6903</orcidid><orcidid>https://orcid.org/0000-0003-1487-1598</orcidid><orcidid>https://orcid.org/0000-0001-5998-2617</orcidid><orcidid>https://orcid.org/0000-0003-3486-1549</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0001-8095-5285</orcidid></search><sort><creationdate>20240401</creationdate><title>MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating</title><author>Bi, Lingyi ; Perry, William ; Wang, Ruocun (John) ; Lord, Robert ; Hryhorchuk, Tetiana ; Inman, Alex ; Gogotsi, Oleksiy ; Balitskiy, Vitaliy ; Zahorodna, Veronika ; Baginskiy, Ivan ; Vorotilo, Stepan ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aramid fibers</topic><topic>Automation</topic><topic>dip coating</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Immersion coating</topic><topic>Internet of Things</topic><topic>Kevlar (trademark)</topic><topic>Mechanical properties</topic><topic>multifunctional yarns</topic><topic>MXene</topic><topic>MXenes</topic><topic>Ohmic dissipation</topic><topic>Resistance heating</topic><topic>smart composites</topic><topic>smart textiles</topic><topic>strain sensing</topic><topic>Textiles</topic><topic>Yarn</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Lingyi</creatorcontrib><creatorcontrib>Perry, William</creatorcontrib><creatorcontrib>Wang, Ruocun (John)</creatorcontrib><creatorcontrib>Lord, Robert</creatorcontrib><creatorcontrib>Hryhorchuk, Tetiana</creatorcontrib><creatorcontrib>Inman, Alex</creatorcontrib><creatorcontrib>Gogotsi, Oleksiy</creatorcontrib><creatorcontrib>Balitskiy, Vitaliy</creatorcontrib><creatorcontrib>Zahorodna, Veronika</creatorcontrib><creatorcontrib>Baginskiy, Ivan</creatorcontrib><creatorcontrib>Vorotilo, Stepan</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Lingyi</au><au>Perry, William</au><au>Wang, Ruocun (John)</au><au>Lord, Robert</au><au>Hryhorchuk, Tetiana</au><au>Inman, Alex</au><au>Gogotsi, Oleksiy</au><au>Balitskiy, Vitaliy</au><au>Zahorodna, Veronika</au><au>Baginskiy, Ivan</au><au>Vorotilo, Stepan</au><au>Gogotsi, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating</atitle><jtitle>Advanced functional materials</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><issue>14</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The rise of the Internet of Things has spurred extensive research on integrating conductive materials into textiles to turn them into sensors, antennas, energy storage devices, and heaters. MXenes, owing to their high electrical conductivity and solution processability, offer an efficient way to add conductivity and electronic functions to textiles through simple dip coating. However, manual development of MXene‐coated textiles restricts their quality, quantity, and variety. Here, a versatile automated yarn dip coater tailored for producing continuously high‐quality MXene‐coated yarns and conducted the most comprehensive MXene‐yarn dip coating study to date is developed. Compared to manual methods, the automated coater provides lower resistance, superior uniformity, faster speed, and reduced MXene consumption. It also enables rapid coating parameter optimization, resulting in a thin Ti3C2 coating uniform over a 1 km length on a braided Kevlar yarn while preserving its excellent mechanical properties (over 800 MPa) and adding Joule heating and damage sensing to composites reinforced by the yarns. By dip‐coating five different yarns of varying materials, diameters, structures, and chemistries, new insights into MXene‐yarn interactions are gained. Thus, the automated dip coating presents ample opportunities for scalable integration of MXenes into a wide range of yarns for diverse functions and applications.
The IoT's growth fuels research on MXene integration into textiles. The automated yarn dip coater exceeds manual methods, providing lower resistance, superior uniformity, faster speed, and reduced MXene consumption across multiple yarns. It swiftly optimizes coatings for specific applications, demonstrated on a braided Kevlar yarn for Joule heating and strain sensing in composites.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202312434</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5030-6903</orcidid><orcidid>https://orcid.org/0000-0003-1487-1598</orcidid><orcidid>https://orcid.org/0000-0001-5998-2617</orcidid><orcidid>https://orcid.org/0000-0003-3486-1549</orcidid><orcidid>https://orcid.org/0000-0001-9423-4032</orcidid><orcidid>https://orcid.org/0000-0001-8095-5285</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-04, Vol.34 (14), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3030975538 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Aramid fibers Automation dip coating Electrical resistivity Energy storage Immersion coating Internet of Things Kevlar (trademark) Mechanical properties multifunctional yarns MXene MXenes Ohmic dissipation Resistance heating smart composites smart textiles strain sensing Textiles Yarn Yarns |
title | MXene Functionalized Kevlar Yarn via Automated, Continuous Dip Coating |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MXene%20Functionalized%20Kevlar%20Yarn%20via%20Automated,%20Continuous%20Dip%20Coating&rft.jtitle=Advanced%20functional%20materials&rft.au=Bi,%20Lingyi&rft.date=2024-04-01&rft.volume=34&rft.issue=14&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202312434&rft_dat=%3Cproquest_cross%3E3030975538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2724-e663f28084999ad77131658f6220205be60f77ca47c3a0814f03a68363563ba23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3030975538&rft_id=info:pmid/&rfr_iscdi=true |