Loading…

Sentiment Analysis for the Natural Environment: A Systematic Review

In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source a...

Full description

Saved in:
Bibliographic Details
Published in:ACM computing surveys 2024-04, Vol.56 (4), p.1-37, Article 88
Main Authors: Ibrohim, Muhammad Okky, Bosco, Cristina, Basile, Valerio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3
cites cdi_FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3
container_end_page 37
container_issue 4
container_start_page 1
container_title ACM computing surveys
container_volume 56
creator Ibrohim, Muhammad Okky
Bosco, Cristina
Basile, Valerio
description In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source and query, annotation, language, detail of the task, and technology/algorithm used. By showing how this research area has grown during the last few years, our investigation provides important findings about the results achieved and the challenges that need to be still addressed for making this technology actually helpful for stakeholders such as policymakers and governments.
doi_str_mv 10.1145/3604605
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031366820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031366820</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuBFFKxVvHta8OApOtvZr3grpX5AUbB6DtNkF1OapO5uK_33Rlq9zMDMwzC8jF0KuBVCqjvUIDWoIzYQSpnMoBTHbAD9OAMEOGVnMS4BYCSFHrDJ3LWpbvrCxy2tdrGO3HeBp0_HXyhtAq34tN3WoWt_0T0f8_kuJtdQqkv-5ra1-z5nJ55W0V0c-pB9PEzfJ0_Z7PXxeTKeZYSgUuYXSBUZotzqRW6tU5YEyVxTpYhKUyrwNifrranQVAJRVR5Lq6XxoGWFQ3a9v7sO3dfGxVQsu03ov44FAgrU2o6gVzd7VYYuxuB8sQ51Q2FXCCh-EyoOCfXyai-pbP7R3_IHqxNfbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031366820</pqid></control><display><type>article</type><title>Sentiment Analysis for the Natural Environment: A Systematic Review</title><source>Business Source Ultimate</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Ibrohim, Muhammad Okky ; Bosco, Cristina ; Basile, Valerio</creator><creatorcontrib>Ibrohim, Muhammad Okky ; Bosco, Cristina ; Basile, Valerio</creatorcontrib><description>In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source and query, annotation, language, detail of the task, and technology/algorithm used. By showing how this research area has grown during the last few years, our investigation provides important findings about the results achieved and the challenges that need to be still addressed for making this technology actually helpful for stakeholders such as policymakers and governments.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3604605</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Algorithms ; Annotations ; Computer science ; Computing methodologies ; Data mining ; Natural language processing ; Query languages ; Sentiment analysis</subject><ispartof>ACM computing surveys, 2024-04, Vol.56 (4), p.1-37, Article 88</ispartof><rights>Copyright held by the owner/author(s).</rights><rights>Copyright Association for Computing Machinery Apr 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3</citedby><cites>FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3</cites><orcidid>0000-0002-8857-4484 ; 0000-0002-6943-6553 ; 0000-0001-8110-6832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ibrohim, Muhammad Okky</creatorcontrib><creatorcontrib>Bosco, Cristina</creatorcontrib><creatorcontrib>Basile, Valerio</creatorcontrib><title>Sentiment Analysis for the Natural Environment: A Systematic Review</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source and query, annotation, language, detail of the task, and technology/algorithm used. By showing how this research area has grown during the last few years, our investigation provides important findings about the results achieved and the challenges that need to be still addressed for making this technology actually helpful for stakeholders such as policymakers and governments.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Computer science</subject><subject>Computing methodologies</subject><subject>Data mining</subject><subject>Natural language processing</subject><subject>Query languages</subject><subject>Sentiment analysis</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQBuBFFKxVvHta8OApOtvZr3grpX5AUbB6DtNkF1OapO5uK_33Rlq9zMDMwzC8jF0KuBVCqjvUIDWoIzYQSpnMoBTHbAD9OAMEOGVnMS4BYCSFHrDJ3LWpbvrCxy2tdrGO3HeBp0_HXyhtAq34tN3WoWt_0T0f8_kuJtdQqkv-5ra1-z5nJ55W0V0c-pB9PEzfJ0_Z7PXxeTKeZYSgUuYXSBUZotzqRW6tU5YEyVxTpYhKUyrwNifrranQVAJRVR5Lq6XxoGWFQ3a9v7sO3dfGxVQsu03ov44FAgrU2o6gVzd7VYYuxuB8sQ51Q2FXCCh-EyoOCfXyai-pbP7R3_IHqxNfbA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ibrohim, Muhammad Okky</creator><creator>Bosco, Cristina</creator><creator>Basile, Valerio</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8857-4484</orcidid><orcidid>https://orcid.org/0000-0002-6943-6553</orcidid><orcidid>https://orcid.org/0000-0001-8110-6832</orcidid></search><sort><creationdate>20240401</creationdate><title>Sentiment Analysis for the Natural Environment: A Systematic Review</title><author>Ibrohim, Muhammad Okky ; Bosco, Cristina ; Basile, Valerio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Computer science</topic><topic>Computing methodologies</topic><topic>Data mining</topic><topic>Natural language processing</topic><topic>Query languages</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrohim, Muhammad Okky</creatorcontrib><creatorcontrib>Bosco, Cristina</creatorcontrib><creatorcontrib>Basile, Valerio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrohim, Muhammad Okky</au><au>Bosco, Cristina</au><au>Basile, Valerio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sentiment Analysis for the Natural Environment: A Systematic Review</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>56</volume><issue>4</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><artnum>88</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source and query, annotation, language, detail of the task, and technology/algorithm used. By showing how this research area has grown during the last few years, our investigation provides important findings about the results achieved and the challenges that need to be still addressed for making this technology actually helpful for stakeholders such as policymakers and governments.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3604605</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-8857-4484</orcidid><orcidid>https://orcid.org/0000-0002-6943-6553</orcidid><orcidid>https://orcid.org/0000-0001-8110-6832</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2024-04, Vol.56 (4), p.1-37, Article 88
issn 0360-0300
1557-7341
language eng
recordid cdi_proquest_journals_3031366820
source Business Source Ultimate; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Algorithms
Annotations
Computer science
Computing methodologies
Data mining
Natural language processing
Query languages
Sentiment analysis
title Sentiment Analysis for the Natural Environment: A Systematic Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sentiment%20Analysis%20for%20the%20Natural%20Environment:%20A%20Systematic%20Review&rft.jtitle=ACM%20computing%20surveys&rft.au=Ibrohim,%20Muhammad%20Okky&rft.date=2024-04-01&rft.volume=56&rft.issue=4&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.artnum=88&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3604605&rft_dat=%3Cproquest_cross%3E3031366820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031366820&rft_id=info:pmid/&rfr_iscdi=true