Loading…
Sentiment Analysis for the Natural Environment: A Systematic Review
In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source a...
Saved in:
Published in: | ACM computing surveys 2024-04, Vol.56 (4), p.1-37, Article 88 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3 |
container_end_page | 37 |
container_issue | 4 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 56 |
creator | Ibrohim, Muhammad Okky Bosco, Cristina Basile, Valerio |
description | In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source and query, annotation, language, detail of the task, and technology/algorithm used. By showing how this research area has grown during the last few years, our investigation provides important findings about the results achieved and the challenges that need to be still addressed for making this technology actually helpful for stakeholders such as policymakers and governments. |
doi_str_mv | 10.1145/3604605 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031366820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031366820</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuBFFKxVvHta8OApOtvZr3grpX5AUbB6DtNkF1OapO5uK_33Rlq9zMDMwzC8jF0KuBVCqjvUIDWoIzYQSpnMoBTHbAD9OAMEOGVnMS4BYCSFHrDJ3LWpbvrCxy2tdrGO3HeBp0_HXyhtAq34tN3WoWt_0T0f8_kuJtdQqkv-5ra1-z5nJ55W0V0c-pB9PEzfJ0_Z7PXxeTKeZYSgUuYXSBUZotzqRW6tU5YEyVxTpYhKUyrwNifrranQVAJRVR5Lq6XxoGWFQ3a9v7sO3dfGxVQsu03ov44FAgrU2o6gVzd7VYYuxuB8sQ51Q2FXCCh-EyoOCfXyai-pbP7R3_IHqxNfbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031366820</pqid></control><display><type>article</type><title>Sentiment Analysis for the Natural Environment: A Systematic Review</title><source>Business Source Ultimate</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Ibrohim, Muhammad Okky ; Bosco, Cristina ; Basile, Valerio</creator><creatorcontrib>Ibrohim, Muhammad Okky ; Bosco, Cristina ; Basile, Valerio</creatorcontrib><description>In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source and query, annotation, language, detail of the task, and technology/algorithm used. By showing how this research area has grown during the last few years, our investigation provides important findings about the results achieved and the challenges that need to be still addressed for making this technology actually helpful for stakeholders such as policymakers and governments.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3604605</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Algorithms ; Annotations ; Computer science ; Computing methodologies ; Data mining ; Natural language processing ; Query languages ; Sentiment analysis</subject><ispartof>ACM computing surveys, 2024-04, Vol.56 (4), p.1-37, Article 88</ispartof><rights>Copyright held by the owner/author(s).</rights><rights>Copyright Association for Computing Machinery Apr 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3</citedby><cites>FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3</cites><orcidid>0000-0002-8857-4484 ; 0000-0002-6943-6553 ; 0000-0001-8110-6832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ibrohim, Muhammad Okky</creatorcontrib><creatorcontrib>Bosco, Cristina</creatorcontrib><creatorcontrib>Basile, Valerio</creatorcontrib><title>Sentiment Analysis for the Natural Environment: A Systematic Review</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source and query, annotation, language, detail of the task, and technology/algorithm used. By showing how this research area has grown during the last few years, our investigation provides important findings about the results achieved and the challenges that need to be still addressed for making this technology actually helpful for stakeholders such as policymakers and governments.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Computer science</subject><subject>Computing methodologies</subject><subject>Data mining</subject><subject>Natural language processing</subject><subject>Query languages</subject><subject>Sentiment analysis</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQBuBFFKxVvHta8OApOtvZr3grpX5AUbB6DtNkF1OapO5uK_33Rlq9zMDMwzC8jF0KuBVCqjvUIDWoIzYQSpnMoBTHbAD9OAMEOGVnMS4BYCSFHrDJ3LWpbvrCxy2tdrGO3HeBp0_HXyhtAq34tN3WoWt_0T0f8_kuJtdQqkv-5ra1-z5nJ55W0V0c-pB9PEzfJ0_Z7PXxeTKeZYSgUuYXSBUZotzqRW6tU5YEyVxTpYhKUyrwNifrranQVAJRVR5Lq6XxoGWFQ3a9v7sO3dfGxVQsu03ov44FAgrU2o6gVzd7VYYuxuB8sQ51Q2FXCCh-EyoOCfXyai-pbP7R3_IHqxNfbA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Ibrohim, Muhammad Okky</creator><creator>Bosco, Cristina</creator><creator>Basile, Valerio</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8857-4484</orcidid><orcidid>https://orcid.org/0000-0002-6943-6553</orcidid><orcidid>https://orcid.org/0000-0001-8110-6832</orcidid></search><sort><creationdate>20240401</creationdate><title>Sentiment Analysis for the Natural Environment: A Systematic Review</title><author>Ibrohim, Muhammad Okky ; Bosco, Cristina ; Basile, Valerio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Computer science</topic><topic>Computing methodologies</topic><topic>Data mining</topic><topic>Natural language processing</topic><topic>Query languages</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibrohim, Muhammad Okky</creatorcontrib><creatorcontrib>Bosco, Cristina</creatorcontrib><creatorcontrib>Basile, Valerio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibrohim, Muhammad Okky</au><au>Bosco, Cristina</au><au>Basile, Valerio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sentiment Analysis for the Natural Environment: A Systematic Review</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>56</volume><issue>4</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><artnum>88</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>In this systematic review, Kitchenham’s framework is used to explore what tasks, techniques, and benchmarks for Sentiment Analysis have been developed for addressing topics about the natural environment. We comprehensively analyze seven dimensions including contribution, topical focus, data source and query, annotation, language, detail of the task, and technology/algorithm used. By showing how this research area has grown during the last few years, our investigation provides important findings about the results achieved and the challenges that need to be still addressed for making this technology actually helpful for stakeholders such as policymakers and governments.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3604605</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-8857-4484</orcidid><orcidid>https://orcid.org/0000-0002-6943-6553</orcidid><orcidid>https://orcid.org/0000-0001-8110-6832</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2024-04, Vol.56 (4), p.1-37, Article 88 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_3031366820 |
source | Business Source Ultimate; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Algorithms Annotations Computer science Computing methodologies Data mining Natural language processing Query languages Sentiment analysis |
title | Sentiment Analysis for the Natural Environment: A Systematic Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sentiment%20Analysis%20for%20the%20Natural%20Environment:%20A%20Systematic%20Review&rft.jtitle=ACM%20computing%20surveys&rft.au=Ibrohim,%20Muhammad%20Okky&rft.date=2024-04-01&rft.volume=56&rft.issue=4&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.artnum=88&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3604605&rft_dat=%3Cproquest_cross%3E3031366820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a305t-fb3ada7aa986b988e58a1a496ad5aac7c50f89a8f87d37d1335df3c8647f064d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031366820&rft_id=info:pmid/&rfr_iscdi=true |