Loading…

Challenges and Perspectives on Impulse Radio-Ultra-Wideband Transceivers for Neural Recording Applications

Brain-machine interfaces (BMI) are widely adopted in neuroscience investigations and neural prosthetics, with sensing channel counts constantly increasing. These Investigations place increasing demands for high data rates and low-power implantable devices despite high tissue losses. The Impulse radi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical circuits and systems 2024-04, Vol.18 (2), p.369-382
Main Authors: Eskandari, Razieh, Sawan, Mohamad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain-machine interfaces (BMI) are widely adopted in neuroscience investigations and neural prosthetics, with sensing channel counts constantly increasing. These Investigations place increasing demands for high data rates and low-power implantable devices despite high tissue losses. The Impulse radio ultra-wideband (IR-UWB), a revived wireless technology for short-range radios, has been widely used in various applications. Since the requirements and solutions are application-oriented, in this review paper we focus on neural recording implants with high-data rates and ultra-low power requirements. We examine in detail the working principle, design methodology, performance, and implementations of different architectures of IR-UWB transceivers in a quantitative manner to draw a deep comparison and extract the bottlenecks and possible solutions concerning the dedicated application. Our analysis shows that current solutions rely on enhanced or combined modulation techniques to improve link margin. An in-depth study of prior-art publications that achieved Gbps data rates concludes that edge-combination architecture and non-coherent detectors are remarkable for transmitter and receiver, respectively. Although the aim to minimize power and improve data rate - defined as energy efficiency (pJ/b) - extending communication distance despite high tissue losses and limited power budget, good narrow-band interference (NBI) tolerance coexisted in the same frequency band of UWB systems, and compatibility with energy harvesting designs are among the critical challenges remained unsolved. Furthermore, we expect that the combination of artificial intelligence (AI) and the inherent advantages of UWB radios will pave the way for future improvements in BMIs.
ISSN:1932-4545
1940-9990
1940-9990
DOI:10.1109/TBCAS.2023.3331049