Loading…

Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation

Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that s...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2024-04, Vol.12 (10), p.n/a
Main Authors: Wu, Chao, Zhao, Tianli, He, Huaile, Hu, Haizheng, Liu, Zeng, Wang, Shunli, Zhang, Fabi, Wang, Qinfeng, Liu, Aiping, Wu, Fengmin, Guo, Daoyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3
cites cdi_FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced optical materials
container_volume 12
creator Wu, Chao
Zhao, Tianli
He, Huaile
Hu, Haizheng
Liu, Zeng
Wang, Shunli
Zhang, Fabi
Wang, Qinfeng
Liu, Aiping
Wu, Fengmin
Guo, Daoyou
description Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that severely hinders device performance. In this study, an innovative approach is successfully developed by introducing high p‐orbital energy nitrogen (N). This leads to the formation of a hybridized state with O 2p orbitals in β‐Ga2O3, resulting in the creation of GaON and suppressing the electrical activity of Vo. Through meticulous experimentation and advanced computational methods, a comprehensive and insightful explanation of the regulation and mechanism underlying this passivation process is offered. Moreover, pn‐junction solar‐blind photodetectors are engineered using hybridized GaON thin films with p‐type CuPc. These photodetectors demonstrate exceptional characteristics, including ultra‐low dark current (10−14 A), high photo‐to‐dark current ratio (106), and rapid decay speed (0.008 s) even at zero bias. Based on these advancements, a solar‐blind ultraviolet communication system is designed, featuring straightforward and reliable encoding, easy implementation, and robust anti‐interference capabilities. By utilizing the N 2p‐O 2p orbital hybridization, the valence band electron energy band structure is effectively modulated, suppressing the electrical activity of oxygen vacancies and sustaining the photoconductive effect.
doi_str_mv 10.1002/adom.202302294
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031568975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031568975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3</originalsourceid><addsrcrecordid>eNqFkUtu2zAURYUiBRo4nnZMoGM7_Ij6DB3XsQs4cAD3MxQo8imhQZEuJTnRrEvIjrKXrCSUHbSZdcR3-e49JHCj6DPBU4IxvRTK1VOKKcOU5vGH6JySnE8ITsnZu_lTNG6aHcY4CJbH6Xn0vLD3wkpQ6BZ85Xw9COQqtBTG6K5--fN0JZqw_qUVoCth1Z3Yo83joLZQa-ms6mTrPFpBC97tOitb7Sy6vXetU-HuuAxktHVG-IFntFVos2-1FAbNXV13NozH1EGLAO_vwKKfQoa_9GhhAsIfvbOAPui2RzdOdeaYuIg-VsI0MH47R9GP68X3-Wqy3iy_zWfriWQkjSccgKkcS4lpRnGZcV6mLEurMgEmaJxBlcQ0zRPJZQkcA02ITHOueCkolRWwUfTlxN1797uDpi12rvM2PFkwzAhPsjzlwTU9uaR3TeOhKvZe18L3BcHF0FMx9FT87SkE8lPgQRvo_-MuZl83N_-yr8tmnWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031568975</pqid></control><display><type>article</type><title>Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, Chao ; Zhao, Tianli ; He, Huaile ; Hu, Haizheng ; Liu, Zeng ; Wang, Shunli ; Zhang, Fabi ; Wang, Qinfeng ; Liu, Aiping ; Wu, Fengmin ; Guo, Daoyou</creator><creatorcontrib>Wu, Chao ; Zhao, Tianli ; He, Huaile ; Hu, Haizheng ; Liu, Zeng ; Wang, Shunli ; Zhang, Fabi ; Wang, Qinfeng ; Liu, Aiping ; Wu, Fengmin ; Guo, Daoyou</creatorcontrib><description>Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that severely hinders device performance. In this study, an innovative approach is successfully developed by introducing high p‐orbital energy nitrogen (N). This leads to the formation of a hybridized state with O 2p orbitals in β‐Ga2O3, resulting in the creation of GaON and suppressing the electrical activity of Vo. Through meticulous experimentation and advanced computational methods, a comprehensive and insightful explanation of the regulation and mechanism underlying this passivation process is offered. Moreover, pn‐junction solar‐blind photodetectors are engineered using hybridized GaON thin films with p‐type CuPc. These photodetectors demonstrate exceptional characteristics, including ultra‐low dark current (10−14 A), high photo‐to‐dark current ratio (106), and rapid decay speed (0.008 s) even at zero bias. Based on these advancements, a solar‐blind ultraviolet communication system is designed, featuring straightforward and reliable encoding, easy implementation, and robust anti‐interference capabilities. By utilizing the N 2p‐O 2p orbital hybridization, the valence band electron energy band structure is effectively modulated, suppressing the electrical activity of oxygen vacancies and sustaining the photoconductive effect.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202302294</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloy engineering ; Communications systems ; Dark current ; Energy gap ; gallium oxide ; Gallium oxides ; Heterojunctions ; Optical communication ; Oxygen ; oxygen vacancy regulation ; Performance enhancement ; Photoconductivity ; Photometers ; solar‐blind communication system ; solar‐blind photodetector ; Thin films</subject><ispartof>Advanced optical materials, 2024-04, Vol.12 (10), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3</citedby><cites>FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3</cites><orcidid>0000-0002-6191-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Zhao, Tianli</creatorcontrib><creatorcontrib>He, Huaile</creatorcontrib><creatorcontrib>Hu, Haizheng</creatorcontrib><creatorcontrib>Liu, Zeng</creatorcontrib><creatorcontrib>Wang, Shunli</creatorcontrib><creatorcontrib>Zhang, Fabi</creatorcontrib><creatorcontrib>Wang, Qinfeng</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Wu, Fengmin</creatorcontrib><creatorcontrib>Guo, Daoyou</creatorcontrib><title>Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation</title><title>Advanced optical materials</title><description>Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that severely hinders device performance. In this study, an innovative approach is successfully developed by introducing high p‐orbital energy nitrogen (N). This leads to the formation of a hybridized state with O 2p orbitals in β‐Ga2O3, resulting in the creation of GaON and suppressing the electrical activity of Vo. Through meticulous experimentation and advanced computational methods, a comprehensive and insightful explanation of the regulation and mechanism underlying this passivation process is offered. Moreover, pn‐junction solar‐blind photodetectors are engineered using hybridized GaON thin films with p‐type CuPc. These photodetectors demonstrate exceptional characteristics, including ultra‐low dark current (10−14 A), high photo‐to‐dark current ratio (106), and rapid decay speed (0.008 s) even at zero bias. Based on these advancements, a solar‐blind ultraviolet communication system is designed, featuring straightforward and reliable encoding, easy implementation, and robust anti‐interference capabilities. By utilizing the N 2p‐O 2p orbital hybridization, the valence band electron energy band structure is effectively modulated, suppressing the electrical activity of oxygen vacancies and sustaining the photoconductive effect.</description><subject>alloy engineering</subject><subject>Communications systems</subject><subject>Dark current</subject><subject>Energy gap</subject><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>Heterojunctions</subject><subject>Optical communication</subject><subject>Oxygen</subject><subject>oxygen vacancy regulation</subject><subject>Performance enhancement</subject><subject>Photoconductivity</subject><subject>Photometers</subject><subject>solar‐blind communication system</subject><subject>solar‐blind photodetector</subject><subject>Thin films</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtu2zAURYUiBRo4nnZMoGM7_Ij6DB3XsQs4cAD3MxQo8imhQZEuJTnRrEvIjrKXrCSUHbSZdcR3-e49JHCj6DPBU4IxvRTK1VOKKcOU5vGH6JySnE8ITsnZu_lTNG6aHcY4CJbH6Xn0vLD3wkpQ6BZ85Xw9COQqtBTG6K5--fN0JZqw_qUVoCth1Z3Yo83joLZQa-ms6mTrPFpBC97tOitb7Sy6vXetU-HuuAxktHVG-IFntFVos2-1FAbNXV13NozH1EGLAO_vwKKfQoa_9GhhAsIfvbOAPui2RzdOdeaYuIg-VsI0MH47R9GP68X3-Wqy3iy_zWfriWQkjSccgKkcS4lpRnGZcV6mLEurMgEmaJxBlcQ0zRPJZQkcA02ITHOueCkolRWwUfTlxN1797uDpi12rvM2PFkwzAhPsjzlwTU9uaR3TeOhKvZe18L3BcHF0FMx9FT87SkE8lPgQRvo_-MuZl83N_-yr8tmnWE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wu, Chao</creator><creator>Zhao, Tianli</creator><creator>He, Huaile</creator><creator>Hu, Haizheng</creator><creator>Liu, Zeng</creator><creator>Wang, Shunli</creator><creator>Zhang, Fabi</creator><creator>Wang, Qinfeng</creator><creator>Liu, Aiping</creator><creator>Wu, Fengmin</creator><creator>Guo, Daoyou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6191-1655</orcidid></search><sort><creationdate>20240401</creationdate><title>Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation</title><author>Wu, Chao ; Zhao, Tianli ; He, Huaile ; Hu, Haizheng ; Liu, Zeng ; Wang, Shunli ; Zhang, Fabi ; Wang, Qinfeng ; Liu, Aiping ; Wu, Fengmin ; Guo, Daoyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloy engineering</topic><topic>Communications systems</topic><topic>Dark current</topic><topic>Energy gap</topic><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>Heterojunctions</topic><topic>Optical communication</topic><topic>Oxygen</topic><topic>oxygen vacancy regulation</topic><topic>Performance enhancement</topic><topic>Photoconductivity</topic><topic>Photometers</topic><topic>solar‐blind communication system</topic><topic>solar‐blind photodetector</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Zhao, Tianli</creatorcontrib><creatorcontrib>He, Huaile</creatorcontrib><creatorcontrib>Hu, Haizheng</creatorcontrib><creatorcontrib>Liu, Zeng</creatorcontrib><creatorcontrib>Wang, Shunli</creatorcontrib><creatorcontrib>Zhang, Fabi</creatorcontrib><creatorcontrib>Wang, Qinfeng</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Wu, Fengmin</creatorcontrib><creatorcontrib>Guo, Daoyou</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chao</au><au>Zhao, Tianli</au><au>He, Huaile</au><au>Hu, Haizheng</au><au>Liu, Zeng</au><au>Wang, Shunli</au><au>Zhang, Fabi</au><au>Wang, Qinfeng</au><au>Liu, Aiping</au><au>Wu, Fengmin</au><au>Guo, Daoyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation</atitle><jtitle>Advanced optical materials</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>12</volume><issue>10</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that severely hinders device performance. In this study, an innovative approach is successfully developed by introducing high p‐orbital energy nitrogen (N). This leads to the formation of a hybridized state with O 2p orbitals in β‐Ga2O3, resulting in the creation of GaON and suppressing the electrical activity of Vo. Through meticulous experimentation and advanced computational methods, a comprehensive and insightful explanation of the regulation and mechanism underlying this passivation process is offered. Moreover, pn‐junction solar‐blind photodetectors are engineered using hybridized GaON thin films with p‐type CuPc. These photodetectors demonstrate exceptional characteristics, including ultra‐low dark current (10−14 A), high photo‐to‐dark current ratio (106), and rapid decay speed (0.008 s) even at zero bias. Based on these advancements, a solar‐blind ultraviolet communication system is designed, featuring straightforward and reliable encoding, easy implementation, and robust anti‐interference capabilities. By utilizing the N 2p‐O 2p orbital hybridization, the valence band electron energy band structure is effectively modulated, suppressing the electrical activity of oxygen vacancies and sustaining the photoconductive effect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202302294</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6191-1655</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-04, Vol.12 (10), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_3031568975
source Wiley-Blackwell Read & Publish Collection
subjects alloy engineering
Communications systems
Dark current
Energy gap
gallium oxide
Gallium oxides
Heterojunctions
Optical communication
Oxygen
oxygen vacancy regulation
Performance enhancement
Photoconductivity
Photometers
solar‐blind communication system
solar‐blind photodetector
Thin films
title Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Performance%20of%20Gallium%E2%80%90Based%20Wide%20Bandgap%20Oxide%20Semiconductor%20Heterojunction%20Photodetector%20for%20Solar%E2%80%90Blind%20Optical%20Communication%20via%20Oxygen%20Vacancy%20Electrical%20Activity%20Modulation&rft.jtitle=Advanced%20optical%20materials&rft.au=Wu,%20Chao&rft.date=2024-04-01&rft.volume=12&rft.issue=10&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202302294&rft_dat=%3Cproquest_cross%3E3031568975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031568975&rft_id=info:pmid/&rfr_iscdi=true