Loading…
Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation
Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that s...
Saved in:
Published in: | Advanced optical materials 2024-04, Vol.12 (10), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3 |
container_end_page | n/a |
container_issue | 10 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 12 |
creator | Wu, Chao Zhao, Tianli He, Huaile Hu, Haizheng Liu, Zeng Wang, Shunli Zhang, Fabi Wang, Qinfeng Liu, Aiping Wu, Fengmin Guo, Daoyou |
description | Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that severely hinders device performance. In this study, an innovative approach is successfully developed by introducing high p‐orbital energy nitrogen (N). This leads to the formation of a hybridized state with O 2p orbitals in β‐Ga2O3, resulting in the creation of GaON and suppressing the electrical activity of Vo. Through meticulous experimentation and advanced computational methods, a comprehensive and insightful explanation of the regulation and mechanism underlying this passivation process is offered. Moreover, pn‐junction solar‐blind photodetectors are engineered using hybridized GaON thin films with p‐type CuPc. These photodetectors demonstrate exceptional characteristics, including ultra‐low dark current (10−14 A), high photo‐to‐dark current ratio (106), and rapid decay speed (0.008 s) even at zero bias. Based on these advancements, a solar‐blind ultraviolet communication system is designed, featuring straightforward and reliable encoding, easy implementation, and robust anti‐interference capabilities.
By utilizing the N 2p‐O 2p orbital hybridization, the valence band electron energy band structure is effectively modulated, suppressing the electrical activity of oxygen vacancies and sustaining the photoconductive effect. |
doi_str_mv | 10.1002/adom.202302294 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3031568975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3031568975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3</originalsourceid><addsrcrecordid>eNqFkUtu2zAURYUiBRo4nnZMoGM7_Ij6DB3XsQs4cAD3MxQo8imhQZEuJTnRrEvIjrKXrCSUHbSZdcR3-e49JHCj6DPBU4IxvRTK1VOKKcOU5vGH6JySnE8ITsnZu_lTNG6aHcY4CJbH6Xn0vLD3wkpQ6BZ85Xw9COQqtBTG6K5--fN0JZqw_qUVoCth1Z3Yo83joLZQa-ms6mTrPFpBC97tOitb7Sy6vXetU-HuuAxktHVG-IFntFVos2-1FAbNXV13NozH1EGLAO_vwKKfQoa_9GhhAsIfvbOAPui2RzdOdeaYuIg-VsI0MH47R9GP68X3-Wqy3iy_zWfriWQkjSccgKkcS4lpRnGZcV6mLEurMgEmaJxBlcQ0zRPJZQkcA02ITHOueCkolRWwUfTlxN1797uDpi12rvM2PFkwzAhPsjzlwTU9uaR3TeOhKvZe18L3BcHF0FMx9FT87SkE8lPgQRvo_-MuZl83N_-yr8tmnWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031568975</pqid></control><display><type>article</type><title>Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wu, Chao ; Zhao, Tianli ; He, Huaile ; Hu, Haizheng ; Liu, Zeng ; Wang, Shunli ; Zhang, Fabi ; Wang, Qinfeng ; Liu, Aiping ; Wu, Fengmin ; Guo, Daoyou</creator><creatorcontrib>Wu, Chao ; Zhao, Tianli ; He, Huaile ; Hu, Haizheng ; Liu, Zeng ; Wang, Shunli ; Zhang, Fabi ; Wang, Qinfeng ; Liu, Aiping ; Wu, Fengmin ; Guo, Daoyou</creatorcontrib><description>Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that severely hinders device performance. In this study, an innovative approach is successfully developed by introducing high p‐orbital energy nitrogen (N). This leads to the formation of a hybridized state with O 2p orbitals in β‐Ga2O3, resulting in the creation of GaON and suppressing the electrical activity of Vo. Through meticulous experimentation and advanced computational methods, a comprehensive and insightful explanation of the regulation and mechanism underlying this passivation process is offered. Moreover, pn‐junction solar‐blind photodetectors are engineered using hybridized GaON thin films with p‐type CuPc. These photodetectors demonstrate exceptional characteristics, including ultra‐low dark current (10−14 A), high photo‐to‐dark current ratio (106), and rapid decay speed (0.008 s) even at zero bias. Based on these advancements, a solar‐blind ultraviolet communication system is designed, featuring straightforward and reliable encoding, easy implementation, and robust anti‐interference capabilities.
By utilizing the N 2p‐O 2p orbital hybridization, the valence band electron energy band structure is effectively modulated, suppressing the electrical activity of oxygen vacancies and sustaining the photoconductive effect.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202302294</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>alloy engineering ; Communications systems ; Dark current ; Energy gap ; gallium oxide ; Gallium oxides ; Heterojunctions ; Optical communication ; Oxygen ; oxygen vacancy regulation ; Performance enhancement ; Photoconductivity ; Photometers ; solar‐blind communication system ; solar‐blind photodetector ; Thin films</subject><ispartof>Advanced optical materials, 2024-04, Vol.12 (10), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3</citedby><cites>FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3</cites><orcidid>0000-0002-6191-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Zhao, Tianli</creatorcontrib><creatorcontrib>He, Huaile</creatorcontrib><creatorcontrib>Hu, Haizheng</creatorcontrib><creatorcontrib>Liu, Zeng</creatorcontrib><creatorcontrib>Wang, Shunli</creatorcontrib><creatorcontrib>Zhang, Fabi</creatorcontrib><creatorcontrib>Wang, Qinfeng</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Wu, Fengmin</creatorcontrib><creatorcontrib>Guo, Daoyou</creatorcontrib><title>Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation</title><title>Advanced optical materials</title><description>Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that severely hinders device performance. In this study, an innovative approach is successfully developed by introducing high p‐orbital energy nitrogen (N). This leads to the formation of a hybridized state with O 2p orbitals in β‐Ga2O3, resulting in the creation of GaON and suppressing the electrical activity of Vo. Through meticulous experimentation and advanced computational methods, a comprehensive and insightful explanation of the regulation and mechanism underlying this passivation process is offered. Moreover, pn‐junction solar‐blind photodetectors are engineered using hybridized GaON thin films with p‐type CuPc. These photodetectors demonstrate exceptional characteristics, including ultra‐low dark current (10−14 A), high photo‐to‐dark current ratio (106), and rapid decay speed (0.008 s) even at zero bias. Based on these advancements, a solar‐blind ultraviolet communication system is designed, featuring straightforward and reliable encoding, easy implementation, and robust anti‐interference capabilities.
By utilizing the N 2p‐O 2p orbital hybridization, the valence band electron energy band structure is effectively modulated, suppressing the electrical activity of oxygen vacancies and sustaining the photoconductive effect.</description><subject>alloy engineering</subject><subject>Communications systems</subject><subject>Dark current</subject><subject>Energy gap</subject><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>Heterojunctions</subject><subject>Optical communication</subject><subject>Oxygen</subject><subject>oxygen vacancy regulation</subject><subject>Performance enhancement</subject><subject>Photoconductivity</subject><subject>Photometers</subject><subject>solar‐blind communication system</subject><subject>solar‐blind photodetector</subject><subject>Thin films</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkUtu2zAURYUiBRo4nnZMoGM7_Ij6DB3XsQs4cAD3MxQo8imhQZEuJTnRrEvIjrKXrCSUHbSZdcR3-e49JHCj6DPBU4IxvRTK1VOKKcOU5vGH6JySnE8ITsnZu_lTNG6aHcY4CJbH6Xn0vLD3wkpQ6BZ85Xw9COQqtBTG6K5--fN0JZqw_qUVoCth1Z3Yo83joLZQa-ms6mTrPFpBC97tOitb7Sy6vXetU-HuuAxktHVG-IFntFVos2-1FAbNXV13NozH1EGLAO_vwKKfQoa_9GhhAsIfvbOAPui2RzdOdeaYuIg-VsI0MH47R9GP68X3-Wqy3iy_zWfriWQkjSccgKkcS4lpRnGZcV6mLEurMgEmaJxBlcQ0zRPJZQkcA02ITHOueCkolRWwUfTlxN1797uDpi12rvM2PFkwzAhPsjzlwTU9uaR3TeOhKvZe18L3BcHF0FMx9FT87SkE8lPgQRvo_-MuZl83N_-yr8tmnWE</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Wu, Chao</creator><creator>Zhao, Tianli</creator><creator>He, Huaile</creator><creator>Hu, Haizheng</creator><creator>Liu, Zeng</creator><creator>Wang, Shunli</creator><creator>Zhang, Fabi</creator><creator>Wang, Qinfeng</creator><creator>Liu, Aiping</creator><creator>Wu, Fengmin</creator><creator>Guo, Daoyou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6191-1655</orcidid></search><sort><creationdate>20240401</creationdate><title>Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation</title><author>Wu, Chao ; Zhao, Tianli ; He, Huaile ; Hu, Haizheng ; Liu, Zeng ; Wang, Shunli ; Zhang, Fabi ; Wang, Qinfeng ; Liu, Aiping ; Wu, Fengmin ; Guo, Daoyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alloy engineering</topic><topic>Communications systems</topic><topic>Dark current</topic><topic>Energy gap</topic><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>Heterojunctions</topic><topic>Optical communication</topic><topic>Oxygen</topic><topic>oxygen vacancy regulation</topic><topic>Performance enhancement</topic><topic>Photoconductivity</topic><topic>Photometers</topic><topic>solar‐blind communication system</topic><topic>solar‐blind photodetector</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Zhao, Tianli</creatorcontrib><creatorcontrib>He, Huaile</creatorcontrib><creatorcontrib>Hu, Haizheng</creatorcontrib><creatorcontrib>Liu, Zeng</creatorcontrib><creatorcontrib>Wang, Shunli</creatorcontrib><creatorcontrib>Zhang, Fabi</creatorcontrib><creatorcontrib>Wang, Qinfeng</creatorcontrib><creatorcontrib>Liu, Aiping</creatorcontrib><creatorcontrib>Wu, Fengmin</creatorcontrib><creatorcontrib>Guo, Daoyou</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chao</au><au>Zhao, Tianli</au><au>He, Huaile</au><au>Hu, Haizheng</au><au>Liu, Zeng</au><au>Wang, Shunli</au><au>Zhang, Fabi</au><au>Wang, Qinfeng</au><au>Liu, Aiping</au><au>Wu, Fengmin</au><au>Guo, Daoyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation</atitle><jtitle>Advanced optical materials</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>12</volume><issue>10</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Gallium oxide (β‐Ga2O3) is a prominent representative of the new generation of wide‐bandgap semiconductors, boasting a bandgap of ≈4.9 eV. However, the growth process of β‐Ga2O3 materials introduces unavoidable oxygen vacancies (Vo), leading to persistent photoconductivity (PPC), a phenomenon that severely hinders device performance. In this study, an innovative approach is successfully developed by introducing high p‐orbital energy nitrogen (N). This leads to the formation of a hybridized state with O 2p orbitals in β‐Ga2O3, resulting in the creation of GaON and suppressing the electrical activity of Vo. Through meticulous experimentation and advanced computational methods, a comprehensive and insightful explanation of the regulation and mechanism underlying this passivation process is offered. Moreover, pn‐junction solar‐blind photodetectors are engineered using hybridized GaON thin films with p‐type CuPc. These photodetectors demonstrate exceptional characteristics, including ultra‐low dark current (10−14 A), high photo‐to‐dark current ratio (106), and rapid decay speed (0.008 s) even at zero bias. Based on these advancements, a solar‐blind ultraviolet communication system is designed, featuring straightforward and reliable encoding, easy implementation, and robust anti‐interference capabilities.
By utilizing the N 2p‐O 2p orbital hybridization, the valence band electron energy band structure is effectively modulated, suppressing the electrical activity of oxygen vacancies and sustaining the photoconductive effect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202302294</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6191-1655</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2024-04, Vol.12 (10), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_3031568975 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | alloy engineering Communications systems Dark current Energy gap gallium oxide Gallium oxides Heterojunctions Optical communication Oxygen oxygen vacancy regulation Performance enhancement Photoconductivity Photometers solar‐blind communication system solar‐blind photodetector Thin films |
title | Enhanced Performance of Gallium‐Based Wide Bandgap Oxide Semiconductor Heterojunction Photodetector for Solar‐Blind Optical Communication via Oxygen Vacancy Electrical Activity Modulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Performance%20of%20Gallium%E2%80%90Based%20Wide%20Bandgap%20Oxide%20Semiconductor%20Heterojunction%20Photodetector%20for%20Solar%E2%80%90Blind%20Optical%20Communication%20via%20Oxygen%20Vacancy%20Electrical%20Activity%20Modulation&rft.jtitle=Advanced%20optical%20materials&rft.au=Wu,%20Chao&rft.date=2024-04-01&rft.volume=12&rft.issue=10&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202302294&rft_dat=%3Cproquest_cross%3E3031568975%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3174-5ee3d90cc02820b855b7387fb6e3a248ef642796c5cbe50e261c795d5ba22cfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031568975&rft_id=info:pmid/&rfr_iscdi=true |